
 

 

 

1 

 

ON-BOARD SOFTWARE DEVELOPMENT FOR A 3U CUBESAT 
 

Emirhan Eser Gül1), Boğaç Karabulut1), Kaan Sarıca1), Alim Rüstem Aslan1) 

1) Space Systems Design and Testing Laboratory, Istanbul Technical University, Istanbul, Turkey 

  emirhaneser@hotmail.com, aslanr@itu.edu.tr, bogackarabulut@gmail.com, src.kaan@gmail.com 

 

SharjahSat-1 is a 3U CubeSat developed by Istanbul Technical University (ITU) and Sharjah Center for Astronomy & 

Space Sciences (SCAASS). The satellite incorporates two payloads; an X-Ray detector and an optical camera system. A 

robust on-board software to control the payloads is critical for the mission in order to ensure the satellite performs its 

required tasks correctly and effectively. This paper imparts the development and implementation processes of the software 

architecture used in the On-Board Computer (OBC) of the nanosatellite. 

 

This paper will concisely explain the determination of the software requirements, architecture of the on-board software 

itself, the complications encountered during development, and the test and verification of the implementation. The flight 

software is developed to efficiently use both payloads and ensure smooth operation of the mission. 
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1. Overview 

 

  The developed software that controls all subsystems, 

including the payloads, runs on the OBC of the satellite. A 

Heterogeneous SoC-based OBC is used for ample 

performance and high-reliability. The mission software is 

developed using FreeRTOS embedded Real-Time Operating 

System for multi-threading functionality. Microsemi MSS 

HAL libraries and ARM CMSIS library are used for hardware 

abstraction of the peripherals and the ARM Cortex-M3 CPU, 

respectively.  

  The OBC performs various critical tasks on the satellite 

such as controlling accesses to peripherals, switching 

subsystems on or off for power efficiency, logging system 

parameters, processing telecommands and most importantly, 

commanding the payloads. Both the hardware and the 

software of the OBC must be as reliable as possible, as there is 

no redundant OBC and maintenance is not possible on-orbit. 

While a bootloader application can be developed to allow 

on-orbit software upgrades, it introduces complexity and 

requires additional code storage space. Since there wasn’t 

enough time to finalize and test the software, this functionality 

was not implemented on Sharjahsat-1, but is recommended 

especially for projects with limited time.  

  The Space Systems Design and Testing Laboratory has 

designed and launched 6 CubeSats, and has plans for more in 

the future. Hence, one of the main goals of the software 

development was to achieve strong re-usability. The software 

uses multiple abstraction layers in order to reduce the 

necessity of developing base libraries from scratch and to 

provide a basis to be used in the future satellite missions. 

Similarly, a modular ground station software that can be 

re-used was also developed in accordance with on-board 

software utilizing an efficient space-ground data exchange 

protocol. SharjahSat-1 utilizes different operating modes in 

the mission, such as start-up, normal, safe, recovery; which 

are switched by a state machine. These various modes 

incorporate different mission critical parameters as well as 

attitude control specifications based on the status of other 

subsystems, especially battery.  

 

1.1.  SharjahSat-1 CubeSat 

  The main objectives of SharjahSat-1 can be inspected in 

two categories.  

 

1. iXRD Payload (Primary Payload): An X-Ray 

detector to: 

- Extend knowledge on miniaturized X-Ray detectors 

and their capabilities to contribute to Space Weather 

research. 

- Detect hard X-rays from very bright galactic X-ray 

sources such as very bright black hole and neutron 

stars. 

-  Observe and study the bright sun flares and 

development of solar coronal holes, responsible for 

driving the stellar wind at an early phase. 

2. Optical Payload (Secondary Payload): A camera 

system with a GSD of at least 50 meter/pixel to: 

- Acquire the images of regions on Earth from low 

orbit.  

- Take photos of SAASST and its surroundings. 

 

In order to achieve these goals, in addition to the OBC, the 

satellite is equipped with the following electronic subsystems 

which are interfaced to each other via PC-104 bus. 

- Electrical Power System (EPS): to generate, regulate, 

and distribute the power to other subsystems as 

required. 

- Battery: to store the generated power. 

- Attitude Determination and Control System (ADCS): 

to detumble and point the satellite towards the 

requested location. 

- Ultra-High Frequency (UHF) and Very-High 

Frequency (VHF) Modem: to uplink commands 
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(VHF) and downlink telemetry & housekeeping data 

(UHF). The VHF band is used for uplink with AFSK 

modulation at 1200bps, and the UHF band is used 

for downlink at 9600bps with GMSK modulation. 

- S-Band Modem: to download the large payload files 

at 2Mbps. 

- Interface Board: a custom board developed by 

SSDTL to deploy antennas, and accommodate the 

beacon and star tracker. A back-up RTC is also 

incorporated. 

 

In terms of OBC, the Clyde Space CubeSat OBC is used as 

the main house-keeping computer for the mission, Figure 1.  

 

Fig. 1.  ClydeSpace CubeSat OBC 

 

Clyde Space CubeSat OBC uses a system-on-chip (SoC) 

device that includes a configurable FPGA fabric and an ARM 

Cortex-M3 processor. It is designed to be highly reliable and 

resistant to radiation effects, with features such as 

error-detection and correction (EDAC), safe state machines, 

and triple modular redundancy (TMR) registers implemented 

in the configurable logic. The OBC has a range of memory 

options, including embedded non-volatile storage (eNVM), 

embedded static random-access memory (eSRAM), 

magneto-resistive RAM (MRAM), and flash memory, all of 

which are interfaced with an EDAC to protect against 

radiation effects. 

 

2.  Software Requirements 

 

2.1.  Non-Functional Requirements 

  McConnell states that managing complexity is the most 

critical technical matter in software development [1], so 

emphasize was given to this topic.  

  According to a flight software report by NASA [2], the 

software gets complicated due to excessively strict 

requirements and a lack of consideration for testability can 

complicate verification; thus, the requirements weren’t 

imposed for the sake of deciding matters but according to real 

constraints which results in a software that can be thoroughly 

tested. 

  The two most important requirements of the software were 

deemed as reliability and reusability. Since the software 

cannot be maintained after launch, a reliable software is a 

must have to ensure smooth operation during the flight. In 

order to assure reliability, three requirements were derived. 

All code should be documented, version control for the 

repository should be used, and software architecture should 

support debug tools.  

  It was also decided that there was a limit on the used 

memory and throughput. Since a RTOS is used, there are lots 

of interrupt routines which introduce a level of uncertainty in 

throughout. Thus, 30% of the available on-chip non-volatile 

memory and 30% of throughput is reserved for unforeseen 

expenses [3].  

  Another critical aspect of reliability is the selection of 

hardware, as it is known that 128 kB of Ram can experience 

up to 10 errors per day in orbit, so protection against single 

event effects (SEE) is essential [4]. The requirement “The 

OBC must be able to recover from transient errors such as 

SEL and SEU, no matter where or when they might occur.” 

was considered during the selection of OBC. 

  Reusability is desired because most of the time only the 

payloads differ in CubeSat systems. Hence, the logic that 

operates the satellite and subsystems was separated from the 

one that operates payloads. The code was written in different 

modules that interact with each other and abstraction was used 

to achieve portability. 

  The same report also states that operations get complicated 

due to ill-conceived autonomy, and it was decided that the 

satellite would be operated manually with autonomy as a 

back-up option. This is further discussed in operation modes 

below. 

 

2.2.  Functional Requirements 

  These requirements were established from the operations 

that the satellite is expected to perform. The main goal is to 

operate the payloads and transmit the generated data to the 

ground station. In order to achieve this, several other critical 

requirements were derived. 

- Development Requirements 

  The capability to attach the debugger and program the OBC 

during any stage of the development process is needed. An 

umbilical connector was designed and attached to the top 

panel of the satellite to both power the satellite externally and 

connect the debugger.  

  A debug mode has to be included to check the program 

flow and fix bugs and errors. One of the UART peripherals of 

the OBC was included in the umbilical connector for this 

purpose. When the DEBUG macro is defined in the software, 

statements required for debugging would be printed via this 

line and displayed on the PC.   

- LEOP Requirements 

  During the LEOP phase, there are several tasks to be 

performed. After waiting for at least 30 minutes after P-POD 

ejection due to CubeSat standard regulations [5] and to allow 

the battery to be charged, the satellite should immediately 

attempt to deploy the antennas so that communication can be 

established. The ADCS will be commended in this stage for 

detumbling and stabilizing the satellite.  

- Communication Requirements 

  The CW beacon should transmit critical information in 

regular time intervals. Housekeeping data of the subsystems 

should also be ready to transmit via UHF modem upon 

request. 

- Telemetry and Telecommand Requirements 

  SharjahSat-1 should be able to receive, verify, and process 
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telecommands issued from the ground station and respond 

with the status of execution. Telemetry for subsystems should 

be collected periodically and stored on the non-volatile space 

to download upon request.  

- Payload Operation 

  Both payloads require pointing towards a location, so the 

ADCS must be used at least 15 minutes before the desired 

time to orient the satellite towards the point of interest (i.e., 

location on Earth for photos and direction of a star for XRD 

observations.) The exact time to perform the operation, and 

parameters of the operation such as the resolution and format 

of images should be provided from the ground and be 

processes on-board accurately. Large files such as raw images 

and iXRD measurements should be compressed to reduce 

storage size and time to download. The satellite should return 

to the orientation it had pre-operation after completion. In 

addition, a metadata file should be created in every operation 

to record the parameters used as well as circumambient 

information such as the temperature of the board. 

- Power and Optimization Requirements 

  The satellite should incorporate different operation modes 

according to the state it’s in. If battery is low to perform the 

desired operation, it should consume less power until the 

voltage crosses a certain threshold. 

- Configurability Requirements 

There are some critical system parameters that the satellite 

uses during its operation, such as the power levels of the 

transmitters, the intervals which the beacon is used and 

telemetry data is stored, and the battery voltage threshold 

levels to enter/exit safe mode. Although preliminary analyses 

were performed to simulate the power generation and 

consumption in-orbit, the real values remain unknown. Hence, 

all these parameters should be configurable from the ground 

station. 

 

3.  Software Architecture & Design  

 

  A CubeSat system has to control real-world entities such as 

switches, sensors, and reaction wheels that should be operated 

in real-time. Reflecting the parallel nature of the system in the 

structures of the program makes for a more maintainable, 

reliable, and readable application [6]. Therefore, a concurrent 

program that minimizes dependencies between modules 

would be an appropriate design for SharjahSat-1. In order to 

choose a real-time operating system (RTOS), several factors 

were considered. First, the board support package for the OBC 

was written in C language, which is a good choice for 

embedded systems programming as it allows direct hardware 

access and can be used to develop efficient programs [7]. 

Second, developing a custom RTOS from scratch would add a 

great deal of complexity [4]. In the end, considering the flight 

heritage (ESTCube, AAUSAT, GOMX-1) as well as the 

experience of the software team, FreeRTOS was chosen as the 

operating system of SharjahSat-1. Even though C does not 

support concurrency or has shared resource management, 

FreeRTOS is a robust library that uses preempting, mutexes 

and semaphores to enable the development of a real-time 

application. Hence, the driver for each subsystem makes use 

of mutexes to prevent concurrent access to peripherals. 

Inter-task communication is achieved by task notifications and 

global variables to retain simplicity and not over-complicate 

the system. In order to satisfy the debugging and version 

control requirements, an eclipse-based IDE provided by MSS 

was used along with an open-source version control system. 

  In real-time applications where guaranteed interaction 

response times are required, a master-slave architecture is 

recommended [8]. Therefore, communication between the 

subsystems is achieved via I2C bus. The OBC is used as the 

master and all other subsystems are slaves that are operated by 

commands from the OBC. Similar to other hardware 

peripherals, a mutex is used to lock the I2C bus as long as it’s 

in use by a subsystem, so the bus is guaranteed to be used 

sequentially.  

  In order to achieve portability and re-usability, abstraction 

for all peripherals (I2C, SPI, UART, PDMA) were done. 

Bare-metal drivers for each individual subsystem were 

developed so that only the abstract peripheral functions can be 

replaced according to the hardware (e.g., I2C read/write) and 

the whole driver can be used in a different system. Separating 

both the OS and hardware layers also help with increasing 

maintainability. 

  In terms of power optimization, , the idle task hook was 

enabled in the RTOS, which is used to put the microcontroller 

into standby mode. However, it was observed that the time 

and energy consumed in order to enter and exit the low power 

state for every tick outweighs potential power saving gains 

unless FreeRTOS tickles idle mode is used, which increases 

complexity. Thus, power optimization was only achieved by 

turning off payloads and some subsystems until they are 

required. 

   

3.1.  Operation Modes 

  There are 8 fundamental operation modes of SharjahSat-1 

on the highest level, implemented using 5 different tasks. 

Once the satellite boots, it checks the non-volatile memory 

space called “registry” to determine the latest mode to switch. 

The boot process is detailed in Figure 2. 

 

Fig. 2.  SharjahSat-1 Boot Sequence. 

 

The details of the operation modes are as follows. 

 

1. LEOP Mode 

  This is the first operation mode the satellite will use after 

launch. It records the time of first boot on the registry, then 
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waits for 90 minutes. If the battery is depleted or the satellite 

is reset due to any other reason during this phase, the boot 

time is read from the registry to prevent unnecessary waiting. 

Afterwards, the antennas are deployed and the ADCS begins 

calibration and operating to detumble the satellite. This 

operation is expected to take a couple of days, and the ADCS 

can be commanded manually from the ground station to 

ensure everything goes as intended. The LEOP mode ends 

when a command to end it is received from the ground, or 

when a timeout of 3 weeks is reached. Then, the task is 

deleted and this mode will never be used again. 

2. Nominal (Nadir-pointing) Mode 

  This is the default mode that the satellite will use. The 

ADCS is used to achieve nadir pointing. Beacon is operated 

and telemetry data is transmitted in regular intervals. Three 

periodic checks are performed in this mode.  

- The registry is checked to see if a mission is 

scheduled from the ground station. If there’s one in 

15 minutes, the payload or transmit task is notified 

and the nominal task is suspended. 

- The battery voltage is read to check if it fell under a 

configurable threshold. If that’s the case, switch to 

safe mode. 

- The time of last command received from the ground 

is read to check if a pre-determined time (3 weeks) 

have passed without a TC. In this case, it is assumed 

to be an issue with the communication link, and the 

autonomous mode is activated. 

3. Sun-pointing Mode 

  Essentially the same as the Nominal mode, with the only 

difference being the ADCS pointing the satellite towards the 

sun for increased power generation. Whether the satellite 

should be in nadir-pointing or sun-pointing mode by default is 

set via a TC. 

4. Safe Mode 

  Used when the battery voltage falls below a threshold that 

can be configured with a TC. The telemetry storage and 

beacon transmission intervals are greater in this mode, and no 

payload operation can be performed. The battery voltage is 

checked periodically and the last pointing mode is restored 

when the value exceeds another configurable threshold.  

5. Camera Operation Mode 

  Used when there’s 15 minutes or less remaining to an 

observation mission. The ADCS is used to track the target 

coordinates on Earth. When the time is reached, photos are 

taken and the last pointing mode is restored. 

6. iXRD Operation Mode 

  Similar to Camera Operation Mode, but the ADCS tracks a 

given X-Ray resource and the iXRD is operated instead.  

7. Transmit Mode 

  Used when a transmit operation is scheduled from the 

ground. The ADCS points the satellite towards the coordinates 

of the ground station. The beacon and telemetry logging are 

stopped. All of the payload data stored on memory that has 

not been sent before are transmitted using the S-Band once the 

target time is reached.  

8. Autonomous Mode 

  Automatically switched if the satellite cannot be accessed 

by uplink for 3 weeks. In this mode, both payloads are 

operated daily, and then the obtained data is transmitted in 

regular intervals for one day. The telemetry logging and 

beacon operation continue periodically. 

Fig. 3.  Operation Mode Relationships. 

 

3.2.  Tasks 

  The software functionalities and operation modes are 

performed in independent FreeRTOS tasks in order to allow a 

modular design, and because a task can tap into all the OS 

resources such as semaphores and timers [9]. 

- Watchdog Task 

  Periodically kicks OBC and EPS watchdogs. Has highest 

priority. 

- Garbage Collector Task 

  Performs background file system garbage collection. Has 

lowest priority. 

- Telemetry Task 

  Collects subsystem telemetry and stores on the file system 

periodically for housekeeping. The time interval is dependent 

on the current operation mode, and is stored on the registry. 

The collected housekeeping data is unformatted and the 

processing is done in the ground station to save memory, 

which results in a total size of 486 bytes saved on each 

execution. A new file is created every day so housekeeping 

data can be requested for time intervals. Has medium priority. 

- Beacon Task 

  Operates beacon, then suspends itself until another task 

resumes it. The time interval is dependent on the current 

operation mode, and is stored on the registry along with 

beacon frequency and power level. Has highest priority. 

- Command Handler Task 

  Checks whether there is new data available in the 

UHF/VHF modem. If there is, increases priority to maximum 

and determines if the received data has the correct command 

structure, then executes the received telecommand, sends 

acknowledge packet, and returns to original priority. If a 

mission is scheduled, writes its parameters to registry. Has 

medium priority. 

- LEOP Task 

  This task runs only in LEOP mode. In first boot of the OBC, 

records the birth time, then waits until 90 minutes has passed. 

Then deploys antennas and starts ADCS LEOP flow. It 

terminates upon receiving command from the GS, or when a 

timeout of 3 weeks has passed. Has highest priority. 

- Nominal Task 

  This task handles the nadir-pointing, sun-pointing, and safe 
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modes. When it starts or resumes, checks the current operation 

mode and commands ADCS to either point to nadir or towards 

the Sun. Then, performs the necessary checks to switch to 

another operation mode. Has highest priority. 

- Payload Operation Task 

  If there is a scheduled mission, the Nominal Task sends a 

notification to this task before suspending itself. Upon 

receiving the notification with the ID of the scheduled mission 

as parameter, commands ADCS to point to desired location 

and performs the camera or iXRD mission. After the mission 

is finished, resumes the Nominal Task with the latest mode 

(nadir or sun pointing). Has highest priority. 

- Transmit Task 

  Similar to Payload Operation Task, switched from the 

Nominal Task via a notification. Commands ADCS to point to 

the target ground station, then transmits all the payload data 

obtained since last execution before resuming the Nominal 

Task. Has highest priority. 

- Autonomous Task 

  Spawned or resumed from the Nominal Task if the last 

received telecommand is 3 weeks old. Handles the 

Autonomous Mode as described above. If a command is 

received, immediately resumes Nominal Task and suspends 

itself. Has highest priority. 

  The execution of tasks is constrained by the current 

operation mode. Telemetry Task does not run in Transmit 

Mode, and has a lower frequency in Safe and Camera/iXRD 

Operation modes. Beacon Task does not run in Transmit and 

Camera/iXRD Operation modes, and has a lower frequency in 

Safe Mode.  

 

4.  Implementation & Verification 

 

4.1. Memory Management 

  The SoC has three storage components, an 8MB 

non-volatile Magnetoresistive random-access memory 

(MRAM), a 256 KB eNVM, and a 4 GB nand-flash memory. 

The eNVM is used to store code and global variables. 

  The variables that require fast access and robustness are 

stored in a portion of the MRAM reserved in the linker file, 

called “registry”. Most of the time, inter-task communication 

is also achieved using this region, so that the eNVM uses less 

space. 

  The remaining 7MB of the MRAM is used for the 

FreeRTOS heap. Payload and housekeeping data are stored on 

the file system that lives on the NAND-flash of the OBC. This 

memory includes hardware EDAC protection. Commands to 

download, upload, and delete files from the file system were 

implemented in the command handler, as well as commands 

to get list of files in a directory and format the file system. A 

command was implemented to delete all data on the file 

system older than specified amount of days. 

  When configuring FreeRTOS memory management, 

“heap4” was chosen for efficiency and to be able to directly 

use the portable layer memory allocation schemes. However, 

two important considerations were observed. The used C 

library implementation was newlib-nano, which internally 

uses default memory allocation routines. This would cause 

random hard faults to occur as it conflicts with the FreeRTOS 

memory allocation scheme. In order to circumvent this, three 

steps were taken. First, reentrancy was enabled in FreeRTOS 

configuration, which increased the memory usage 

considerably. Second, a memory management API written on 

top of the "C" standard (using newlib) was used [10]. Lastly, 

the malloc family functions were wrapped with functions 

using the FreeRTOS APIs. The third step is redundant but 

implemented as a back-up solution regardless. 

 

4.2. Registry  

  The critical system parameters are stored on registry and for 

reliability these parameters have a checksum also in registry. 

On startup, the registry is read and the system parameters are 

read into a global struct. If the checksum is invalid, default 

parameters are used. These parameters can be changed via 

ground station commands, and the global struct is also 

immediately updated. A section of the registry table of the 

satellite looks like Table 1. 

 

Table 1.  Satellite Registry 

Bytes [0:3] Description 

BIRTH_TIME First time (1970 epoch) system boots 

after launch 

DEATH_TIME Last time satellite shuts down 

REBIRTH_TIME Time system reboots after last shutdown 

DEATH_CAUSE Cause for the last shutdown 

(undervoltage, hard fault, stack overflow) 

LAST_MODE Last operation mode 

SYSTEM_PARAMS Configurable system parameters. EPS 

watchdog time, UHF/VHF frequencies, 

modem power levels, beacon operation 

periods, telemetry storage periods. 

 

4.3. File System 

  Since the largest non-volatile bulk storage memory on the 

OBC is a nand-flash, the filesystem was chosen as YAFFS 

due to its wide-usage, clear documentation, and flight heritage. 

YAFFS was configured to be concordant with the nand-flash 

by adjusting the block and page sizes. 

  A software ECC algorithm was not implemented as the 

memory is already protected via EDAC mechanism and the 

cost of using such an algorithm was found to be not worth the 

time and energy it consumes. 

 

4.4 Telecommands 

  All commands sent to the satellite must be in a specific 

structure that includes a “magic number” that acts as a key to 

confirm that the command was really sent from the operator, a 

command id to identify the command, parameters to be sent 

along with the command, and the total length of the command 

packet. A state machine in Command Handler Task checks the 

received command and executes the appropriate function from 

the look-up table. 

 

4.5. Telemetry 

  Similar to telecommands, all telemetry packets conform to a 

specific structure as given in Table 2. These packets are 

encoded in an AX.25 frame. 
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Table 2.  Telemetry Packet Structure 

Magic No 

(4 bytes) 

TM ID 

(1 byte) 

Data 

Length 

(1 byte) 

Packet 

Counter  

(4 bytes) 

Data 

(246 bytes) 

Key to confirm 

the packet 

belongs to 

SharjahSat-1 

Identifier 

of the 

packet. 

Size of 

data 

section. 

# of packet, 

counted from 

high to low. 

Actual 

telemetry 

data. 

 

4.6. Event Logging 

  To save space, only the errors are logged in a log file on 

filesystem. These may include subsystem and peripheral 

failures, and command processing errors such as unrecognized 

command format etc. 

 

4.7. Beacon 

  Since the beacon uses a considerable amount of power, it is 

in our best interest to reduce the amount of characters 

transmitted to a minimum. The most critical values to be 

transmitted by the beacon were chosen and shown in Table 3. 

 

Table 3.  Beacon Data 

Data Description 

Operation 

Mode & Health 

Status 

Binary array of 16 bits in HEX format. Each 

bit represents the status of a subsystem, with 

the 4 MS bits representing the operation mode. 

VBAT Battery Voltage Level 

IBAT Battery Current Level 

TBRD Battery Board Temperature 

IPCM3V3 Output Current level of 3.3V Bus 

IPCM5V Output Current level of 5V bus 

 

  Instead of transmitting the actual values, one of the 26 

letters were assigned to represent an interval. For example, the 

letter “P” represents a voltage level between 7.6 and 7.7 V.  

  For the encoding of operation mode and health status, a 

different approach was used. In Morse Code, numbers always 

have 5 characters, and letters have a maximum of 4. Also, 

letters in hexadecimal go only to F, which means the rest of 

the alphabet is free. Thus, if we assign a letter for each 

number, we can reduce the number of characters transmitted 

even further. There are 10 such letters in Morse code (except 

for A, B, C, D, E, F) that are maximum 3 characters long. In 

this way, each number can be represented in up to 3 characters 

instead of 5. For example, the hexadecimal character of “1” is 

mapped to the letter “T”. This way, the number of Morse 

Code characters the beacon transmits (excluding the callsign) 

can vary between 9 to 36 characters. 

 

4.8. Tests 

  Most of the bugs and functional errors were fixed on-the-go 

as the software was being developed, as it is considered a 

better approach than waiting for the final code for such a large 

project. After the implementation was completed, numerous 

tests were performed to verify the integrity and performance 

of the software. Some of the test items are given in Table 4. 

The actual list consists of around 100 items.  

 

Table 4.  Software Test Items 

Test Expected Output 

Demand telemetry packets 

from all subsystems for a 

determined time interval. 

Check time tag of the 

received data. 

The received telemetry packet 

should be belong to the 

predetermined time interval. 

Safe mode transition from 

other modes based on 

voltage level. 

Operation mode should be changed 

when battery voltage decreases 

below 7.2V, and returns to 

previous mode when it increases to 

7.6V. 

Test all telecommands 

on-board 

Command handler should execute 

the correct command and the 

function should give an expected 

output 

Hard reset satellite 

sometime after start-up. 

Satellite should detect for how 

long it was powered down, and 

deduce it from the amount of time 

it should wait. 

Receive beacon message 

from ground station 

Beacon should operate in 

configured time intervals and 

should transmit correct data. 

Schedule multiple camera 

and iXRD missions from 

the GS. 

The missions should start at the 

desired time and use the correct 

parameters. 

 

5.  Conclusion 

 

  This paper described the development and testing processes 

and the architecture of the on-board flight software of 

SharjahSat-1. The whole development process took about 2 

and a half years, and more than 31,000 lines of code written 

on top of the OBC drivers, FreeRTOS, and file system source 

codes. A great deal of time and effort was spent on the 

reusability to lay the groundwork for future missions, and to 

make the system as flexible as possible to allow on-the-fly 

changes while ensuring the robustness of the software, as well 

as eliminating bugs and faults at every step. The satellite will 

be launched in the fourth quarter of 2022 and the reliability of 

the software will be proven then.  
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