

1

ON-BOARD SOFTWARE DEVELOPMENT FOR A 3U CUBESAT

Emirhan Eser Gül1), Boğaç Karabulut1), Kaan Sarıca1), Alim Rüstem Aslan1)

1) Space Systems Design and Testing Laboratory, Istanbul Technical University, Istanbul, Turkey

 emirhaneser@hotmail.com, aslanr@itu.edu.tr, bogackarabulut@gmail.com, src.kaan@gmail.com

SharjahSat-1 is a 3U CubeSat developed by Istanbul Technical University (ITU) and Sharjah Center for Astronomy &

Space Sciences (SCAASS). The satellite incorporates two payloads; an X-Ray detector and an optical camera system. A

robust on-board software to control the payloads is critical for the mission in order to ensure the satellite performs its

required tasks correctly and effectively. This paper imparts the development and implementation processes of the software

architecture used in the On-Board Computer (OBC) of the nanosatellite.

This paper will concisely explain the determination of the software requirements, architecture of the on-board software

itself, the complications encountered during development, and the test and verification of the implementation. The flight

software is developed to efficiently use both payloads and ensure smooth operation of the mission.

Key Words: Mission Software, Cubesat, Microcontrollers, Real-Time Operating Systems

1. Overview

 The developed software that controls all subsystems,

including the payloads, runs on the OBC of the satellite. A

Heterogeneous SoC-based OBC is used for ample

performance and high-reliability. The mission software is

developed using FreeRTOS embedded Real-Time Operating

System for multi-threading functionality. Microsemi MSS

HAL libraries and ARM CMSIS library are used for hardware

abstraction of the peripherals and the ARM Cortex-M3 CPU,

respectively.

 The OBC performs various critical tasks on the satellite

such as controlling accesses to peripherals, switching

subsystems on or off for power efficiency, logging system

parameters, processing telecommands and most importantly,

commanding the payloads. Both the hardware and the

software of the OBC must be as reliable as possible, as there is

no redundant OBC and maintenance is not possible on-orbit.

While a bootloader application can be developed to allow

on-orbit software upgrades, it introduces complexity and

requires additional code storage space. Since there wasn’t

enough time to finalize and test the software, this functionality

was not implemented on Sharjahsat-1, but is recommended

especially for projects with limited time.

 The Space Systems Design and Testing Laboratory has

designed and launched 6 CubeSats, and has plans for more in

the future. Hence, one of the main goals of the software

development was to achieve strong re-usability. The software

uses multiple abstraction layers in order to reduce the

necessity of developing base libraries from scratch and to

provide a basis to be used in the future satellite missions.

Similarly, a modular ground station software that can be

re-used was also developed in accordance with on-board

software utilizing an efficient space-ground data exchange

protocol. SharjahSat-1 utilizes different operating modes in

the mission, such as start-up, normal, safe, recovery; which

are switched by a state machine. These various modes

incorporate different mission critical parameters as well as

attitude control specifications based on the status of other

subsystems, especially battery.

1.1. SharjahSat-1 CubeSat

 The main objectives of SharjahSat-1 can be inspected in

two categories.

1. iXRD Payload (Primary Payload): An X-Ray

detector to:

- Extend knowledge on miniaturized X-Ray detectors

and their capabilities to contribute to Space Weather

research.

- Detect hard X-rays from very bright galactic X-ray

sources such as very bright black hole and neutron

stars.

- Observe and study the bright sun flares and

development of solar coronal holes, responsible for

driving the stellar wind at an early phase.

2. Optical Payload (Secondary Payload): A camera

system with a GSD of at least 50 meter/pixel to:

- Acquire the images of regions on Earth from low

orbit.

- Take photos of SAASST and its surroundings.

In order to achieve these goals, in addition to the OBC, the

satellite is equipped with the following electronic subsystems

which are interfaced to each other via PC-104 bus.

- Electrical Power System (EPS): to generate, regulate,

and distribute the power to other subsystems as

required.

- Battery: to store the generated power.

- Attitude Determination and Control System (ADCS):

to detumble and point the satellite towards the

requested location.

- Ultra-High Frequency (UHF) and Very-High

Frequency (VHF) Modem: to uplink commands

mailto:emirhaneser@hotmail.com
mailto:aslanr@itu.edu.tr
mailto:bogackarabulut@gmail.com
mailto:src.kaan@gmail.com

2

(VHF) and downlink telemetry & housekeeping data

(UHF). The VHF band is used for uplink with AFSK

modulation at 1200bps, and the UHF band is used

for downlink at 9600bps with GMSK modulation.

- S-Band Modem: to download the large payload files

at 2Mbps.

- Interface Board: a custom board developed by

SSDTL to deploy antennas, and accommodate the

beacon and star tracker. A back-up RTC is also

incorporated.

In terms of OBC, the Clyde Space CubeSat OBC is used as

the main house-keeping computer for the mission, Figure 1.

Fig. 1. ClydeSpace CubeSat OBC

Clyde Space CubeSat OBC uses a system-on-chip (SoC)

device that includes a configurable FPGA fabric and an ARM

Cortex-M3 processor. It is designed to be highly reliable and

resistant to radiation effects, with features such as

error-detection and correction (EDAC), safe state machines,

and triple modular redundancy (TMR) registers implemented

in the configurable logic. The OBC has a range of memory

options, including embedded non-volatile storage (eNVM),

embedded static random-access memory (eSRAM),

magneto-resistive RAM (MRAM), and flash memory, all of

which are interfaced with an EDAC to protect against

radiation effects.

2. Software Requirements

2.1. Non-Functional Requirements

 McConnell states that managing complexity is the most

critical technical matter in software development [1], so

emphasize was given to this topic.

 According to a flight software report by NASA [2], the

software gets complicated due to excessively strict

requirements and a lack of consideration for testability can

complicate verification; thus, the requirements weren’t

imposed for the sake of deciding matters but according to real

constraints which results in a software that can be thoroughly

tested.

 The two most important requirements of the software were

deemed as reliability and reusability. Since the software

cannot be maintained after launch, a reliable software is a

must have to ensure smooth operation during the flight. In

order to assure reliability, three requirements were derived.

All code should be documented, version control for the

repository should be used, and software architecture should

support debug tools.

 It was also decided that there was a limit on the used

memory and throughput. Since a RTOS is used, there are lots

of interrupt routines which introduce a level of uncertainty in

throughout. Thus, 30% of the available on-chip non-volatile

memory and 30% of throughput is reserved for unforeseen

expenses [3].

 Another critical aspect of reliability is the selection of

hardware, as it is known that 128 kB of Ram can experience

up to 10 errors per day in orbit, so protection against single

event effects (SEE) is essential [4]. The requirement “The

OBC must be able to recover from transient errors such as

SEL and SEU, no matter where or when they might occur.”

was considered during the selection of OBC.

 Reusability is desired because most of the time only the

payloads differ in CubeSat systems. Hence, the logic that

operates the satellite and subsystems was separated from the

one that operates payloads. The code was written in different

modules that interact with each other and abstraction was used

to achieve portability.

 The same report also states that operations get complicated

due to ill-conceived autonomy, and it was decided that the

satellite would be operated manually with autonomy as a

back-up option. This is further discussed in operation modes

below.

2.2. Functional Requirements

 These requirements were established from the operations

that the satellite is expected to perform. The main goal is to

operate the payloads and transmit the generated data to the

ground station. In order to achieve this, several other critical

requirements were derived.

- Development Requirements

 The capability to attach the debugger and program the OBC

during any stage of the development process is needed. An

umbilical connector was designed and attached to the top

panel of the satellite to both power the satellite externally and

connect the debugger.

 A debug mode has to be included to check the program

flow and fix bugs and errors. One of the UART peripherals of

the OBC was included in the umbilical connector for this

purpose. When the DEBUG macro is defined in the software,

statements required for debugging would be printed via this

line and displayed on the PC.

- LEOP Requirements

 During the LEOP phase, there are several tasks to be

performed. After waiting for at least 30 minutes after P-POD

ejection due to CubeSat standard regulations [5] and to allow

the battery to be charged, the satellite should immediately

attempt to deploy the antennas so that communication can be

established. The ADCS will be commended in this stage for

detumbling and stabilizing the satellite.

- Communication Requirements

 The CW beacon should transmit critical information in

regular time intervals. Housekeeping data of the subsystems

should also be ready to transmit via UHF modem upon

request.

- Telemetry and Telecommand Requirements

 SharjahSat-1 should be able to receive, verify, and process

3

telecommands issued from the ground station and respond

with the status of execution. Telemetry for subsystems should

be collected periodically and stored on the non-volatile space

to download upon request.

- Payload Operation

 Both payloads require pointing towards a location, so the

ADCS must be used at least 15 minutes before the desired

time to orient the satellite towards the point of interest (i.e.,

location on Earth for photos and direction of a star for XRD

observations.) The exact time to perform the operation, and

parameters of the operation such as the resolution and format

of images should be provided from the ground and be

processes on-board accurately. Large files such as raw images

and iXRD measurements should be compressed to reduce

storage size and time to download. The satellite should return

to the orientation it had pre-operation after completion. In

addition, a metadata file should be created in every operation

to record the parameters used as well as circumambient

information such as the temperature of the board.

- Power and Optimization Requirements

 The satellite should incorporate different operation modes

according to the state it’s in. If battery is low to perform the

desired operation, it should consume less power until the

voltage crosses a certain threshold.

- Configurability Requirements

There are some critical system parameters that the satellite

uses during its operation, such as the power levels of the

transmitters, the intervals which the beacon is used and

telemetry data is stored, and the battery voltage threshold

levels to enter/exit safe mode. Although preliminary analyses

were performed to simulate the power generation and

consumption in-orbit, the real values remain unknown. Hence,

all these parameters should be configurable from the ground

station.

3. Software Architecture & Design

 A CubeSat system has to control real-world entities such as

switches, sensors, and reaction wheels that should be operated

in real-time. Reflecting the parallel nature of the system in the

structures of the program makes for a more maintainable,

reliable, and readable application [6]. Therefore, a concurrent

program that minimizes dependencies between modules

would be an appropriate design for SharjahSat-1. In order to

choose a real-time operating system (RTOS), several factors

were considered. First, the board support package for the OBC

was written in C language, which is a good choice for

embedded systems programming as it allows direct hardware

access and can be used to develop efficient programs [7].

Second, developing a custom RTOS from scratch would add a

great deal of complexity [4]. In the end, considering the flight

heritage (ESTCube, AAUSAT, GOMX-1) as well as the

experience of the software team, FreeRTOS was chosen as the

operating system of SharjahSat-1. Even though C does not

support concurrency or has shared resource management,

FreeRTOS is a robust library that uses preempting, mutexes

and semaphores to enable the development of a real-time

application. Hence, the driver for each subsystem makes use

of mutexes to prevent concurrent access to peripherals.

Inter-task communication is achieved by task notifications and

global variables to retain simplicity and not over-complicate

the system. In order to satisfy the debugging and version

control requirements, an eclipse-based IDE provided by MSS

was used along with an open-source version control system.

 In real-time applications where guaranteed interaction

response times are required, a master-slave architecture is

recommended [8]. Therefore, communication between the

subsystems is achieved via I2C bus. The OBC is used as the

master and all other subsystems are slaves that are operated by

commands from the OBC. Similar to other hardware

peripherals, a mutex is used to lock the I2C bus as long as it’s

in use by a subsystem, so the bus is guaranteed to be used

sequentially.

 In order to achieve portability and re-usability, abstraction

for all peripherals (I2C, SPI, UART, PDMA) were done.

Bare-metal drivers for each individual subsystem were

developed so that only the abstract peripheral functions can be

replaced according to the hardware (e.g., I2C read/write) and

the whole driver can be used in a different system. Separating

both the OS and hardware layers also help with increasing

maintainability.

 In terms of power optimization, , the idle task hook was

enabled in the RTOS, which is used to put the microcontroller

into standby mode. However, it was observed that the time

and energy consumed in order to enter and exit the low power

state for every tick outweighs potential power saving gains

unless FreeRTOS tickles idle mode is used, which increases

complexity. Thus, power optimization was only achieved by

turning off payloads and some subsystems until they are

required.

3.1. Operation Modes

 There are 8 fundamental operation modes of SharjahSat-1

on the highest level, implemented using 5 different tasks.

Once the satellite boots, it checks the non-volatile memory

space called “registry” to determine the latest mode to switch.

The boot process is detailed in Figure 2.

Fig. 2. SharjahSat-1 Boot Sequence.

The details of the operation modes are as follows.

1. LEOP Mode

 This is the first operation mode the satellite will use after

launch. It records the time of first boot on the registry, then

4

waits for 90 minutes. If the battery is depleted or the satellite

is reset due to any other reason during this phase, the boot

time is read from the registry to prevent unnecessary waiting.

Afterwards, the antennas are deployed and the ADCS begins

calibration and operating to detumble the satellite. This

operation is expected to take a couple of days, and the ADCS

can be commanded manually from the ground station to

ensure everything goes as intended. The LEOP mode ends

when a command to end it is received from the ground, or

when a timeout of 3 weeks is reached. Then, the task is

deleted and this mode will never be used again.

2. Nominal (Nadir-pointing) Mode

 This is the default mode that the satellite will use. The

ADCS is used to achieve nadir pointing. Beacon is operated

and telemetry data is transmitted in regular intervals. Three

periodic checks are performed in this mode.

- The registry is checked to see if a mission is

scheduled from the ground station. If there’s one in

15 minutes, the payload or transmit task is notified

and the nominal task is suspended.

- The battery voltage is read to check if it fell under a

configurable threshold. If that’s the case, switch to

safe mode.

- The time of last command received from the ground

is read to check if a pre-determined time (3 weeks)

have passed without a TC. In this case, it is assumed

to be an issue with the communication link, and the

autonomous mode is activated.

3. Sun-pointing Mode

 Essentially the same as the Nominal mode, with the only

difference being the ADCS pointing the satellite towards the

sun for increased power generation. Whether the satellite

should be in nadir-pointing or sun-pointing mode by default is

set via a TC.

4. Safe Mode

 Used when the battery voltage falls below a threshold that

can be configured with a TC. The telemetry storage and

beacon transmission intervals are greater in this mode, and no

payload operation can be performed. The battery voltage is

checked periodically and the last pointing mode is restored

when the value exceeds another configurable threshold.

5. Camera Operation Mode

 Used when there’s 15 minutes or less remaining to an

observation mission. The ADCS is used to track the target

coordinates on Earth. When the time is reached, photos are

taken and the last pointing mode is restored.

6. iXRD Operation Mode

 Similar to Camera Operation Mode, but the ADCS tracks a

given X-Ray resource and the iXRD is operated instead.

7. Transmit Mode

 Used when a transmit operation is scheduled from the

ground. The ADCS points the satellite towards the coordinates

of the ground station. The beacon and telemetry logging are

stopped. All of the payload data stored on memory that has

not been sent before are transmitted using the S-Band once the

target time is reached.

8. Autonomous Mode

 Automatically switched if the satellite cannot be accessed

by uplink for 3 weeks. In this mode, both payloads are

operated daily, and then the obtained data is transmitted in

regular intervals for one day. The telemetry logging and

beacon operation continue periodically.

Fig. 3. Operation Mode Relationships.

3.2. Tasks

 The software functionalities and operation modes are

performed in independent FreeRTOS tasks in order to allow a

modular design, and because a task can tap into all the OS

resources such as semaphores and timers [9].

- Watchdog Task

 Periodically kicks OBC and EPS watchdogs. Has highest

priority.

- Garbage Collector Task

 Performs background file system garbage collection. Has

lowest priority.

- Telemetry Task

 Collects subsystem telemetry and stores on the file system

periodically for housekeeping. The time interval is dependent

on the current operation mode, and is stored on the registry.

The collected housekeeping data is unformatted and the

processing is done in the ground station to save memory,

which results in a total size of 486 bytes saved on each

execution. A new file is created every day so housekeeping

data can be requested for time intervals. Has medium priority.

- Beacon Task

 Operates beacon, then suspends itself until another task

resumes it. The time interval is dependent on the current

operation mode, and is stored on the registry along with

beacon frequency and power level. Has highest priority.

- Command Handler Task

 Checks whether there is new data available in the

UHF/VHF modem. If there is, increases priority to maximum

and determines if the received data has the correct command

structure, then executes the received telecommand, sends

acknowledge packet, and returns to original priority. If a

mission is scheduled, writes its parameters to registry. Has

medium priority.

- LEOP Task

 This task runs only in LEOP mode. In first boot of the OBC,

records the birth time, then waits until 90 minutes has passed.

Then deploys antennas and starts ADCS LEOP flow. It

terminates upon receiving command from the GS, or when a

timeout of 3 weeks has passed. Has highest priority.

- Nominal Task

 This task handles the nadir-pointing, sun-pointing, and safe

5

modes. When it starts or resumes, checks the current operation

mode and commands ADCS to either point to nadir or towards

the Sun. Then, performs the necessary checks to switch to

another operation mode. Has highest priority.

- Payload Operation Task

 If there is a scheduled mission, the Nominal Task sends a

notification to this task before suspending itself. Upon

receiving the notification with the ID of the scheduled mission

as parameter, commands ADCS to point to desired location

and performs the camera or iXRD mission. After the mission

is finished, resumes the Nominal Task with the latest mode

(nadir or sun pointing). Has highest priority.

- Transmit Task

 Similar to Payload Operation Task, switched from the

Nominal Task via a notification. Commands ADCS to point to

the target ground station, then transmits all the payload data

obtained since last execution before resuming the Nominal

Task. Has highest priority.

- Autonomous Task

 Spawned or resumed from the Nominal Task if the last

received telecommand is 3 weeks old. Handles the

Autonomous Mode as described above. If a command is

received, immediately resumes Nominal Task and suspends

itself. Has highest priority.

 The execution of tasks is constrained by the current

operation mode. Telemetry Task does not run in Transmit

Mode, and has a lower frequency in Safe and Camera/iXRD

Operation modes. Beacon Task does not run in Transmit and

Camera/iXRD Operation modes, and has a lower frequency in

Safe Mode.

4. Implementation & Verification

4.1. Memory Management

 The SoC has three storage components, an 8MB

non-volatile Magnetoresistive random-access memory

(MRAM), a 256 KB eNVM, and a 4 GB nand-flash memory.

The eNVM is used to store code and global variables.

 The variables that require fast access and robustness are

stored in a portion of the MRAM reserved in the linker file,

called “registry”. Most of the time, inter-task communication

is also achieved using this region, so that the eNVM uses less

space.

 The remaining 7MB of the MRAM is used for the

FreeRTOS heap. Payload and housekeeping data are stored on

the file system that lives on the NAND-flash of the OBC. This

memory includes hardware EDAC protection. Commands to

download, upload, and delete files from the file system were

implemented in the command handler, as well as commands

to get list of files in a directory and format the file system. A

command was implemented to delete all data on the file

system older than specified amount of days.

 When configuring FreeRTOS memory management,

“heap4” was chosen for efficiency and to be able to directly

use the portable layer memory allocation schemes. However,

two important considerations were observed. The used C

library implementation was newlib-nano, which internally

uses default memory allocation routines. This would cause

random hard faults to occur as it conflicts with the FreeRTOS

memory allocation scheme. In order to circumvent this, three

steps were taken. First, reentrancy was enabled in FreeRTOS

configuration, which increased the memory usage

considerably. Second, a memory management API written on

top of the "C" standard (using newlib) was used [10]. Lastly,

the malloc family functions were wrapped with functions

using the FreeRTOS APIs. The third step is redundant but

implemented as a back-up solution regardless.

4.2. Registry

 The critical system parameters are stored on registry and for

reliability these parameters have a checksum also in registry.

On startup, the registry is read and the system parameters are

read into a global struct. If the checksum is invalid, default

parameters are used. These parameters can be changed via

ground station commands, and the global struct is also

immediately updated. A section of the registry table of the

satellite looks like Table 1.

Table 1. Satellite Registry

Bytes [0:3] Description

BIRTH_TIME First time (1970 epoch) system boots

after launch

DEATH_TIME Last time satellite shuts down

REBIRTH_TIME Time system reboots after last shutdown

DEATH_CAUSE Cause for the last shutdown

(undervoltage, hard fault, stack overflow)

LAST_MODE Last operation mode

SYSTEM_PARAMS Configurable system parameters. EPS

watchdog time, UHF/VHF frequencies,

modem power levels, beacon operation

periods, telemetry storage periods.

4.3. File System

 Since the largest non-volatile bulk storage memory on the

OBC is a nand-flash, the filesystem was chosen as YAFFS

due to its wide-usage, clear documentation, and flight heritage.

YAFFS was configured to be concordant with the nand-flash

by adjusting the block and page sizes.

 A software ECC algorithm was not implemented as the

memory is already protected via EDAC mechanism and the

cost of using such an algorithm was found to be not worth the

time and energy it consumes.

4.4 Telecommands

 All commands sent to the satellite must be in a specific

structure that includes a “magic number” that acts as a key to

confirm that the command was really sent from the operator, a

command id to identify the command, parameters to be sent

along with the command, and the total length of the command

packet. A state machine in Command Handler Task checks the

received command and executes the appropriate function from

the look-up table.

4.5. Telemetry

 Similar to telecommands, all telemetry packets conform to a

specific structure as given in Table 2. These packets are

encoded in an AX.25 frame.

6

Table 2. Telemetry Packet Structure

Magic No

(4 bytes)

TM ID

(1 byte)

Data

Length

(1 byte)

Packet

Counter

(4 bytes)

Data

(246 bytes)

Key to confirm

the packet

belongs to

SharjahSat-1

Identifier

of the

packet.

Size of

data

section.

of packet,

counted from

high to low.

Actual

telemetry

data.

4.6. Event Logging

 To save space, only the errors are logged in a log file on

filesystem. These may include subsystem and peripheral

failures, and command processing errors such as unrecognized

command format etc.

4.7. Beacon

 Since the beacon uses a considerable amount of power, it is

in our best interest to reduce the amount of characters

transmitted to a minimum. The most critical values to be

transmitted by the beacon were chosen and shown in Table 3.

Table 3. Beacon Data

Data Description

Operation

Mode & Health

Status

Binary array of 16 bits in HEX format. Each

bit represents the status of a subsystem, with

the 4 MS bits representing the operation mode.

VBAT Battery Voltage Level

IBAT Battery Current Level

TBRD Battery Board Temperature

IPCM3V3 Output Current level of 3.3V Bus

IPCM5V Output Current level of 5V bus

 Instead of transmitting the actual values, one of the 26

letters were assigned to represent an interval. For example, the

letter “P” represents a voltage level between 7.6 and 7.7 V.

 For the encoding of operation mode and health status, a

different approach was used. In Morse Code, numbers always

have 5 characters, and letters have a maximum of 4. Also,

letters in hexadecimal go only to F, which means the rest of

the alphabet is free. Thus, if we assign a letter for each

number, we can reduce the number of characters transmitted

even further. There are 10 such letters in Morse code (except

for A, B, C, D, E, F) that are maximum 3 characters long. In

this way, each number can be represented in up to 3 characters

instead of 5. For example, the hexadecimal character of “1” is

mapped to the letter “T”. This way, the number of Morse

Code characters the beacon transmits (excluding the callsign)

can vary between 9 to 36 characters.

4.8. Tests

 Most of the bugs and functional errors were fixed on-the-go

as the software was being developed, as it is considered a

better approach than waiting for the final code for such a large

project. After the implementation was completed, numerous

tests were performed to verify the integrity and performance

of the software. Some of the test items are given in Table 4.

The actual list consists of around 100 items.

Table 4. Software Test Items

Test Expected Output

Demand telemetry packets

from all subsystems for a

determined time interval.

Check time tag of the

received data.

The received telemetry packet

should be belong to the

predetermined time interval.

Safe mode transition from

other modes based on

voltage level.

Operation mode should be changed

when battery voltage decreases

below 7.2V, and returns to

previous mode when it increases to

7.6V.

Test all telecommands

on-board

Command handler should execute

the correct command and the

function should give an expected

output

Hard reset satellite

sometime after start-up.

Satellite should detect for how

long it was powered down, and

deduce it from the amount of time

it should wait.

Receive beacon message

from ground station

Beacon should operate in

configured time intervals and

should transmit correct data.

Schedule multiple camera

and iXRD missions from

the GS.

The missions should start at the

desired time and use the correct

parameters.

5. Conclusion

 This paper described the development and testing processes

and the architecture of the on-board flight software of

SharjahSat-1. The whole development process took about 2

and a half years, and more than 31,000 lines of code written

on top of the OBC drivers, FreeRTOS, and file system source

codes. A great deal of time and effort was spent on the

reusability to lay the groundwork for future missions, and to

make the system as flexible as possible to allow on-the-fly

changes while ensuring the robustness of the software, as well

as eliminating bugs and faults at every step. The satellite will

be launched in the fourth quarter of 2022 and the reliability of

the software will be proven then.

Acknowledgments

 We would like to express our sincere appreciation to all

members of the Space Systems Design and Testing

Laboratory for their invaluable contributions to this project.

Special thanks go to Eng. Aybüke Ağırbaş, MSc. Egemen

Çatal, and Eng. Onur Öztekin for their dedicated support

during the testing and verification process. We also extend our

gratitude to ITUNOVA for generously providing the

necessary resources and accommodations for the project.

References

1. McConnell, S.: Code Complete, Microsoft Press 2nd Edition,

2004, p. 159.

2. West, A.: NASA Study on Flight Software Complexity, NASA,

7

2009, pp. 1-3.

3.

Larson, W.J., Wertz J. R.: Space Mission Analysis and Design, 3rd

Edition, Microcosm Press, 2005, pp. 645-685.

4. Kiær, C.E., Arnesen, M.H.: Mission Event Planning & Error

Recovery for CubeSat Applications, Institutt for elektronikk og

telekommunikasjon, 2014.

5. The CubeSat Program: CubeSat Design Specification Rev. 13.,

California Polytechnic State University, 2014.

6. Burns, A., Wellings. A.: Real-Time Systems and Programming

Languages 4th Edition, Pearson Education Limited, 2009.

7. Sommervile, I.: Software Engineering, International Computer

Science Series. ed: Addison Wesley, 2004.

8. Koopman, P.: Better Embedded System Software, Drumnadrochit

Education, 2010.

9. Askari, H.A., Eugene, E.W.H., Nikicio, A.N., Hiang, G.C., Sha,

L. Choo, L.H.: Software Development for Galassia CubeSat –

Design, Implementation and In-Orbit Validation, 2017.

10. Nadler & Associates: newlib and FreeRTOS, url:

https://nadler.com/embedded/newlibAndFreeRTOS.html

