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This study proposes a non traditional gyro-based estimation system for attitude estimation and sensor bias calibration of 

a small satellite. The proposed system combines the TRIAD algorithm, a vector based attitude determination method, with 

an extended Kalman filter (EKF) in order to reduce the computational load and bring flexibility to the filter. As the first step, 

the TRIAD algorithm produces an initial coarse quaternion set estimation using three-axis magnetometer and sun sensor 

measurements. Then, this coarse estimation is filtered to obtain the final estimation. Besides attitude estimation, EKF also 

helps to correct the magnetometer and gyroscope measurements by estimating the corresponding bias vectors. In order to 

verify the performance of the proposed system, several numerical simulations are performed for a hypothetical nanosatellite. 

Simulations include attitude, magnetometer bias, and gyro bias estimation results as well as the performance of the proposed 

system in different angular velocities and for various time-varying magnetometer biases. 
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1. Introduction 

 

  In recent years, small satellites, especially nanosatellites, 

have attracted significant attention, both in industry and in 

academia1). Their low cost and short development time have 

prompted more people and private companies to work in the 

field of satellite technologies. However, such satellites, which 

are strictly limited in terms of mass, size and cost, also bring 

some difficulties in the development and design phases. The 

use of expensive and high-capability components may not be 

possible due to cost constraints, or the number of sensors that 

can be used may have to be limited due to size and mass 

constraints. The attitude determination & control subsystem 

(ADCS) is one of the most important subsystems on a satellite 

and is also one of the most affected by the on-orbit spacecraft 

failures together with the orbit control subsystem2). Having an 

on-board computer with limited computational power and the 

use of commercial off-the-shelf (COTS) sensors and actuators 

due to above mentioned limitations make the design of this 

subsystem especially a challenging task for nanosatellites. 

Focusing on the attitude determination part, it is expected that 

the designed system should be able to quickly estimate the 

attitude within a predetermined accuracy range and at the same 

time not require much computational power.  

  The traditional approach to attitude estimation algorithms for 

spacecrafts in general includes the use of an extended or 

unscented Kalman filter (EKF or UKF)3-7). However, these 

approaches may require large amounts of computational power 

due to the non-linearity of the measurement models of some of 

the attitude sensors (e.g., magnetometer) and thus may not be 

practical for small satellites. One of the ways to deal with this 

non-linearity in measurement models is to preprocess the 

sensor measurements using one of the static attitude 

determination methods (e.g., TRIAD, QUEST, SVD) and 

obtain an initial attitude estimation which then can be fed to the 

filter. These approaches are known as the integrated or non-

traditional approaches and numerous studies on the subject are 

available8-11). Direct input of the attitude information makes the 

measurement model for the filter linear since the states become 

directly observable and thus partially reduces the computational 

load. Another advantage of these methods is that they are more 

flexible than traditional filtering, as switching between 

different attitude sensors is easier. 

  Besides the computational load, another issue to consider 

during the design phase of the attitude estimation algorithm for 

small satellites is the error proneness of COTS attitude sensors. 

In particular, magnetometers, which are indispensable 

components of basic small satellite sensor packages, are 

affected by many different types of errors such as biases, scale 

factors, and non-orthogonality in magnetometer axes12). Since 

a magnetometer with these errors will not be able to provide 

accurate measurements, it must be in-flight calibrated to 

achieve higher accuracy in attitude estimation. The survey 

paper13) presents a comprehensive study of magnetometer 

calibration methods including attitude-dependent, attitude-

independent, sequential, and batch calibration. In this study, the 

use of the Kalman filter for calibration falls under the attitude-

dependent sequential calibration category, and there are studies 

in the literature that present complete magnetometer calibration 

with this method14-16). 

  Another important component of the small satellite ADCS 

are gyroscopes. Although not directly an attitude sensor, they 

are used to propagate satellite kinematics during filtering as 

they provide angular velocity measurements to the system. 

Filters in which kinematic equations are propagated in this way 

are known as gyro-based filters and in these filters, gyro biases 

are also estimated in addition to the attitude17). Another 

approach to attitude filtering is to propagate the satellite 

kinematics using the satellite dynamics, which filters using this 

approach are known as dynamics-based filters. However, in 
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practice it is impossible to build a perfect dynamic model for a 

satellite, which leads to more frequent use of gyro-based filters. 

There are also studies that make use of both dynamic model and 

gyroscope measurements7,18). This method, in which attitude, 

angular velocity and gyroscope biases are estimated 

simultaneously, can be particularly advantageous when there 

are uncertainties in both the gyroscope measurements and the 

dynamic model. 

  In this study, an integrated TRIAD/EKF system is proposed 

for attitude estimation, and magnetometer and gyro bias 

calibration of a small satellite. The TRIAD algorithm is used as 

the first stage attitude determination method since it is 

computationally less demanding compared to other methods, 

which is an important requirement for a small satellite. Since it 

is very difficult to model realistically, satellite dynamics was 

not exploited throughout the study and therefore the system can 

be considered as a gyro-based system. In order to verify the 

performance of the system, several numerical simulations are 

performed for a hypothetical nanosatellite. Apart from the 

estimation results and accuracy, these simulations also include 

the performance of the system in different angular velocities 

and for various time-varying magnetometer biases. Although 

there are studies in existing literature proposing similar systems 

using a UKF19,20), this study discusses the use of an EKF in a 

non-traditional way for time-varying magnetometer bias 

estimation which has not been discussed in any of previous 

publications. 

 

2.  Small Satellite Attitude Kinematics and Sensor 

Measurement Models 

 

2.1.  Satellite Attitude Kinematics 

 

  The quaternion-based satellite attitude kinematics equation is 

given in the compact form as12) 

𝒒̇ =
1

2
Ω(𝝎𝑏𝑟)𝒒 (1) 

where 𝒒 is the four component quaternion vector and 𝝎𝑏𝑟
 is 

the body angular velocity vector with respect to the reference 

frame. Ω(⋅)  symbol represents the skew-symmetric matrix 

and for 𝝎𝑏𝑟, it is defined as 

Ω(𝝎𝑏𝑟) =

[
 
 
 
 

0 ω𝑏𝑟𝑧 −ω𝑏𝑟𝑦 ω𝑏𝑟𝑥

−ω𝑏𝑟𝑧 0 ω𝑏𝑟𝑥 ω𝑏𝑟𝑦

ω𝑏𝑟𝑦 −ω𝑏𝑟𝑥 0 ω𝑏𝑟𝑧

−ω𝑏𝑟𝑥
−ω𝑏𝑟𝑦

−ω𝑏𝑟𝑧
0 ]

 
 
 
 

(2) 

Here, it should be noted that Eq. (1) is highly dependent on the 

chosen reference frame. For gyro-based filters (as in this study), 

satellite kinematics are propagated using gyroscope 

measurements, which are devices measuring the body angular 

velocity with respect to the inertial frame. If the reference frame 

is chosen as the Earth-centered inertial (ECI) frame, then 

gyroscope measurements can be used directly in Eq. (1). 

However, if the chosen reference is not an inertial frame, then 

angular velocity measurements should be transformed 

accordingly. In this study, the orbital frame is chosen as the 

reference frame. Therefore, a transformation is needed as 

follows 

𝝎𝑏𝑟 = 𝝎𝑏𝑜 = 𝝎̃𝑏𝑖 − 𝐴[0 −ω𝑜 0] (3) 

where 𝝎𝑏𝑜  is the body angular velocity vector with respect 

orbital frame, 𝝎̃𝑏𝑖  is the gyroscope measurement, 𝐴  is the 

attitude matrix, and 𝜔𝑜  is the angular velocity of the orbit 

which can be obtained for a circular orbit as 

ω𝑜 = √
μ

𝑟0
3 (4) 

where μ is the gravitational parameters and 𝑟0 is the distance 

between the center of mass of the satellite and the Earth. 

 

2.2.  Sensor Measurement Models 

 

  The proposed system uses a three-axis magnetometer and a 

sun sensor as the attitude sensors, and also has a gyroscope that 

provides body angular velocity measurements for the satellite 

kinematics. The magnetometer measurement model including 

sensor noise and bias can be given as follows 

𝑩̃𝑏 = 𝐴𝑩𝑟 + 𝜼𝑚 + 𝒃𝑚 (5) 

where 𝑩̃𝑏 is the measured magnetic field vector in body frame, 

𝑩𝑟 is the magnetic field vector in reference frame, 𝒃𝑚 is the 

bias vector, and 𝜼𝑚  is the sensor noise vector which is 

assumed to be a zero-mean white Gaussian noise. The behavior 

of magnetometer bias vector, on the other hand, is given by 

d𝒃m

dt
= 𝜼m,b (6) 

where 𝜼𝑚,𝑏 is the bias noise vector which is assumed to be a 

zero-mean white Gaussian noise. 

  The Earth magnetic field vector 𝑩𝑟  can be modeled in 

orbital frame using the International Geomagnetic Reference 

Field (IGRF) model21) with a dipole approximation15) as  

 

              𝐵𝑟𝑥 =
𝑀𝑒

𝑟0
3 {𝑐(ω𝑜𝑡)[𝑐(ε)𝑠(𝑖) − 𝑠(ε)𝑐(𝑖)𝑐(ω𝑒𝑡)] 

                                                              −𝑠(ω𝑜𝑡)𝑠(ε)𝑠(ω𝑒𝑡)} (7) 

𝐵𝑟𝑦 = −
𝑀𝑒

𝑟0
3 {𝑐(ε)𝑠(𝑖) + 𝑠(ε)𝑠(𝑖)𝑐(ω𝑒𝑡)}          (8) 

              𝐵𝑟𝑧 =
2𝑀𝑒

𝑟0
3 𝑠(ω𝑜𝑡)[𝑐(ε)𝑠(𝑖) − 𝑠(ε)𝑐(𝑖)𝑐(ω𝑒𝑡)] 

                                                                −2𝑠(ω𝑜𝑡)𝑠(ε)𝑠(ω𝑒𝑡) (9) 

 

where Me = 7.71 × 1015  Wb.m is the magnetic dipole 

moment of Earth, ε = 9.3∘ is the magnetic dipole tilt angle, 

ωe = 7.29 × 10−5 rad/s is the spin rate of Earth, and 𝑖 is the 

orbit inclination. c(⋅) and s(⋅) are abbreviations for cosine 

and sine, respectively. 

  For the sun sensor, which is the other attitude sensor, the 

calibrated measurement model including sensor noise can be 

given as follows  

𝑺̃𝑏 = 𝐴𝑺𝑟 + 𝜼𝑠 (10) 

where 𝑺̃𝑏 is the measured sun direction vector in body frame, 

𝑺𝑟 is the sun direction vector in reference frame, and 𝜼𝑠 is the 

sensor noise vector which is assumed to be a zero-mean white 

Gaussian noise. The sun direction vector 𝑺𝑟 can be calculated 

via well-known sun direction calculation algorithms which one 

of them is presented in22) and will not be repeated here for the 

sake of brevity. 

  Lastly, for the gyroscope, the measurement model including 

sensor noise and bias can be given as follows  
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𝝎̃𝑏𝑖 = 𝝎𝑏𝑖 + 𝜼𝜔 + 𝒃𝜔 (11) 

where 𝝎̃𝑏𝑖  is the measured body angular velocity, 𝒃𝜔 is the 

bias vector, and 𝜼𝜔  is the sensor noise vector which is 

assumed to be a zero-mean white Gaussian noise. The behavior 

of gyroscope bias vector, on the other hand, is given by 

𝑑𝒃𝜔

𝑑𝑡
= 𝜼𝜔,𝑏 (12) 

where 𝜼𝜔,𝑏 is the bias noise vector which is assumed to be, 

again, a zero-mean white Gaussian noise. 

 

3.  TRIAD Algorithm  

 

TRIAD algorithm (also known as the algebraic method or the 

two-vector algorithm) is one of the earliest published spacecraft 

attitude determination methods which requires two vector 

observations to fully determine the three-axis attitude23). Given 

two reference unit vector 𝑽̂1 , 𝑽̂2  and measurement vectors 

𝑾̂1, 𝑾̂2 corresponding to these reference vectors, the goal is 

to find an orthogonal attitude matrix 𝐴 such that24) 

𝐴𝑽̂1 = 𝑾̂1,   𝐴𝑽̂2 = 𝑾̂2 (13) 

  Orthogonal attitude matrix 𝐴  is known to be 

overdetermined, thus two triads of orthonormal reference and 

measurement vectors are constructed according to 

𝒓̂1 = 𝑽̂1                                  (14) 

𝒓̂2 = (𝑽̂1 × 𝑽̂2)/|𝑽̂1 × 𝑽̂2| (15) 

𝒓̂3 = 𝒓̂1 × 𝒓̂2                        (16) 

and 

𝒔̂1 = 𝑾̂1                                  (17) 

     𝒔̂2 = (𝑾̂1 × 𝑾̂2)/|𝑾̂1 × 𝑾̂2| (18) 

𝒔̂3 = 𝒔̂1 × 𝒔̂2                         (19) 

where there is a unique orthogonal matrix 𝐴 which satisfies 

𝐴𝑟̂𝑖 = 𝑠̂𝑖 ,   (𝑖 = 1,2,3) (20) 

  Eq. (20) is known to be the TRIAD solution, and the 

necessary and sufficient condition for this solution to be valid 

is given as 

𝑽̂1 ⋅ 𝑽̂2 = 𝑾̂1 ⋅ 𝑾̂2 (21) 

  Looking at Eq. (16) and Eq. (19), it is seen that part of the 

information contained in 𝑽̂2  and 𝑾̂2  is discarded which 

causes TRIAD solution to be asymmetric. Therefore, in order 

to increase the accuracy of the algorithm, it is advised to choose 

the first vector observation to have the greater accuracy. 

 

3.1.  TRIAD Covariance Analysis 

 

  In order to compose the measurement noise covariance 

matrix (𝑅) required for the Kalman filter, the covariance matrix 

of the attitude parameters obtained as a result of the TRIAD 

algorithm is needed. This covariance matrix can be calculated 

in terms of error angle vector elements as follows24)  

𝑃𝜃𝜃 = 𝜎1
2𝐼3×3 +

1

|𝑾̂1 ⋅ 𝑾̂2|
2 [(𝜎2

2 − 𝜎1
2)𝑾̂1𝑾̂1

𝑇 

+ 𝜎1
2(𝑾̂1 ⋅ 𝑾̂2)(𝑾̂1𝑾̂2

𝑇 + 𝑾̂2𝑾̂1
𝑇)     (22) 

  It is also possible to write the covariance matrix given by Eq. 

(22) in terms of Euler angles (𝜙1, 𝜙2, 𝜙3). The relationship 

between the two covariance matrices is given by 

𝑃ϕϕ = 𝐻𝑃θθ𝐻
𝑇 (23) 

where the matrix H is calculated as follows 

[𝐻−1]𝑖𝑗 =
1

2
∑(

∂𝐴𝑘

∂ϕ𝑗

× 𝐴𝑘)
𝑖

3

𝑘=1

(24) 

where 𝑘 represents the corresponding column of the attitude 

matrix 𝐴.  

  The attitude determination algorithm presented in this study 

uses quaternions as the attitude parameters. Therefore, a 4 × 4 

covariance matrix is required for the determined quaternion set. 

This covariance matrix can be obtained using the 3 × 3 Euler 

angles covariance matrix given in Eq. (23) and well-known 

covariance law as follows25) 

𝑃𝑞𝑞 = 𝐵𝑃ϕϕ𝐵𝑇 (25) 

where the matrix 𝐵 is calculated as follows 

𝐵 =

[
 
 
 
 
 
 
𝜕𝜙1

𝜕𝑞1

𝜕𝜙1

𝜕𝑞2

𝜕𝜙1

𝜕𝑞3

𝜕𝜙1

𝜕𝑞4

𝜕𝜙2

𝜕𝑞1

𝜕𝜙2

𝜕𝑞2

𝜕𝜙2

𝜕𝑞3

𝜕𝜙2

𝜕𝑞4

𝜕𝜙3

𝜕𝑞1

𝜕𝜙3

𝜕𝑞2

𝜕𝜙3

𝜕𝑞3

𝜕𝜙3

𝜕𝑞4 ]
 
 
 
 
 
 

(26) 

 

4.  Extended Kalman Filter Formulation 

 

The scheme for the TRIAD aided EKF algorithm for attitude, 

magnetometer bias, and gyro bias estimation is given in Figure 

1, and the 10 × 1 state vector is presented as 

𝒙 = [

𝒒
𝒃𝑚

𝒃ω

] (27) 

 

Fig. 1.  Integrated TRIAD/EKF estimation system. 

 

  The state vector given in Eq. (27) can be propagated using 

the following discrete model25) 

𝒙𝑘+1
− = 𝒇(𝒙𝑘, 𝑘) + 𝒘𝑘 (28) 

where the function 𝒇(𝒙𝑘 , 𝑘) is the nonlinear state transition 

function (maps the previous state to the current state), 𝒘𝑘 is 

the process noise which is assumed to be a zero-mean white and 

Gaussian noise with the covariance of 𝑄𝑘 , and ⋅̂−  symbol 

represents the prediction. 

  The measurement vector for the filter consisting of TRIAD 

quaternion solution and magnetometer measurements is 

modeled as 

𝒛𝑘 = 𝒉(𝒙𝑘, 𝑘) + 𝒗𝑘 (29)

where the function 𝒉(𝒙𝑘 , 𝑘)  is the nonlinear measurement 
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model (maps the current state to the measurements) and 𝒗𝑘 is 

the measurement noise which is, again, assumed to be a zero-

mean white and Gaussian noise with the covariance of 𝑅𝑘. As 

can be clearly noticed, since the TRIAD quaternion solution 

ensures that attitude states are directly observable for the filter, 

parts corresponding to these states in the 𝒉(𝒙𝑘, 𝑘) function 

will become linear (identity matrix to be more precise). In this 

way, the necessity of Jacobian calculations for attitude states is 

eliminated when generating the predicted measurement vector. 

  On the other hand, the propagation of the state error 

covariance matrix P in discrete time is given by 

𝑃̂𝑘+1
− = Φ𝑘𝑃𝑘Φ𝑘

𝑇 + 𝑄𝑘 (30) 

where Φ𝑘 is the state transition matrix and can be calculated 

by using the first-order Taylor series expansion at the sampling 

time 𝑇𝑠 as follows 

Φ𝑘 = 𝑒𝐹𝑘𝑇𝑠 ≈ 𝐼 + 𝐹𝑘𝑇𝑠 (31) 

where the matrix 𝐹𝑘 is given by 

𝐹𝑘 =
∂𝒇(𝒙𝑘 , 𝑘)

∂𝒙
|
𝒙=𝒙̂𝑘

+

(32) 

  Eqs. (28) and (30) constitute the prediction part of the EKF 

which as a result, predictions are obtained. The correction (or 

update) part of the filter starts with calculating the Kalman gain 

matrix 𝐾𝑘+1 as 

𝐾𝑘+1 =
𝑃̂𝑘+1

− 𝐻𝑘+1
𝑇

𝐻𝑘+1𝑃̂𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1

(33) 

where 𝐻𝑘+1  is known as the state observation matrix 

calculated as 

𝐻𝑘+1 =
∂𝒉(𝒙𝑘+1

− , 𝑘 + 1)

∂𝒙
|
𝒙=𝒙̂𝑘+1

−

(34) 

  After the calculation of the Kalman gain matrix, the 

correction is made for the predictions as 

𝒙𝑘+1
+ = 𝒙𝑘+1

− + 𝐾𝑘+1𝒚𝑘+1 (35) 

𝑃̂𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃̂𝑘+1

− (36) 

where 𝒚𝑘+1 is known as the filter innovation (or residual) and 

defined as 

𝒚𝑘+1 = 𝒛𝑘+1 − 𝒉(𝒙𝑘+1
− , 𝑘 + 1) (37) 

 

5.  Numerical Simulations and Discussion 

 

  In order to verify the performance of the proposed system 

various simulations are performed for a hypothetical 

nanosatellite. Table 1 shows the parameters for the numerical 

simulations including orbit and sensor specifications. Since 

direction cosines are used, there is no unit for the magnetometer 

and sun sensor specifications. It is also assumed that the 

satellite never enters eclipse throughout the orbit so that 

measurements are available from the sun sensor continuously. 

 

Table 1.  Simulation parameters (Std = Standard Deviation). 

Angular velocity (𝑟𝑎𝑑/𝑠𝑒𝑐) (6.5, 6.6, 6.7)10−3 

Altitude (km) 626 

Orbital period (sec) 5833.7 

Orbit eccentricity 0 (circular) 

Orbit inclination (o) 111.5 

Orbit right ascension (o) 15 

Satellite moment of inertia (𝑘𝑔 ⋅ 𝑚2) (2.1, 2.0, 1.9)10−3 

Std of Sun sensor error 0.02 

Std of magnetometer error 0.08 

Std of gyroscope error (𝑟𝑎𝑑/𝑠𝑒𝑐) 0.001 

Magnetometer bias vector (0.2, 0.4, 0.6) 

Gyroscope bias vector (𝑟𝑎𝑑/𝑠𝑒𝑐) (0.58, 0.65, 0.73) 

 

  Figure 2, 3, and 4 show the estimation results using the 

above-mentioned parameters. Looking at figures, it is seen that 

the filter needs approximately 1000 seconds to converge which 

is nearly 1/6𝑡ℎ  of one full orbit. In order to understand the 

accuracy of the estimations better, Table 2 shows root mean 

square errors (RMSEs) for each state after the filter 

convergence. Since most of the processes in the system are 

stochastic, 100 Monte Carlo runs are executed and RMSE 

values are calculated by taking the average of these runs. 

 

Fig. 2.  Attitude estimation results (quaternions). 

 

Fig. 3.  Gyro bias estimation results. 

 

Fig. 4.  Magnetometer bias estimation results. 
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Table 2.  RMSE values for each state (100 Monte Carlo run). 

States RMSE Value 

𝒒𝟏 0.004729 

𝒒𝟐 0.004999 

𝒒𝟑 0.004040 

𝒒𝟒 0.004462 

𝑏𝑚𝑥
 0.005362 

𝑏𝑚𝑦
 0.007085 

𝑏𝑚𝑧
 0.003949 

𝑏ω𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000422 

𝑏ω𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000267 

𝑏ω𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000439 

 

  Simulations are also performed in different angular velocities 

to observe the behavior of the system. Table 3 shows the RMSE 

values for states in three different satellite angular velocities. In 

Table 3, angular velocity vectors are presented as 0.1𝝎, 𝝎,  

and 10𝛚 representing the multiples of the angular velocity 

value (𝝎) given in Table 1. For example, 10𝛚 corresponds to 

an angular velocity vector of (6.5,6.6,6.7)10−2 rad/sec . 

When the results are examined, it is seen that the accuracy of 

attitude and magnetometer bias estimations increases when the 

initial angular velocity vector of the satellite is increased. 

However, a similar consistent trend in gyroscope bias 

estimations is not observed. Improvement in some estimations 

due to the increase in the angular velocity vector is an expected 

thing since Kalman filters are generally known to work better 

in dynamical systems than in stationary systems. 

 

Table 3.  RMSE values in different angular velocities  

(100 Monte Carlo run). 

States 

Angular Velocity (𝝎) 

0.1𝝎 𝝎 10𝝎 

RMSE Values 

𝒒𝟏 0.010834 0.004729 0.002836 

𝒒𝟐 0.022945 0.004999 0.003053 

𝒒𝟑 0.003294 0.004040 0.002750 

𝒒𝟒 0.10162 0.004462 0.002811 

𝑏𝑚𝑥
 0.032073 0.005362 0.002081 

𝑏𝑚𝑦
 0.022561 0.007085 0.002331 

𝑏𝑚𝑧
 0.031748 0.003949 0.002124 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000355 0.000422 0.000356 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000447 0.000267 0.000280 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000374 0.000439 0.000349 

 

  Lastly, in order to test the performance of the proposed 

system in case of time-varying magnetometer bias, two 

additional simulations are performed. These simulations 

include a time-varying sinusoidal bias and a bias where there is 

an active bias drift. Figure 5 and 6 show the bias estimation 

results. 

 Looking at Figure 5 and 6 it is seen that the proposed system 

can also successfully estimate various types of time-varying 

magnetometer biases. In addition to figures, Table 4 shows the 

RMSE values of the estimations for different type of 

magnetometer biases including the constant bias case given by 

Figure 4 and Table 2. 

 

Fig. 5.  Magnetometer bias estimation results in case of sinusoidal bias 

(0.0005 Hz frequency). 

 

 

Fig. 6.  Magnetometer bias estimation results in case of bias drift  

(0.0001 drift rate). 

 

Table 3.  RMSE values for different types of magnetometer biases  

(100 Monte Carlo run). 

States 

Magnetometer Bias Type 

Constant Sinusoidal Drift 

RMSE Values 

𝒒𝟏 0.004729 0.007555 0.005486 

𝒒𝟐 0.004999 0.008712 0.006335 

𝒒𝟑 0.004040 0.007248 0.005640 

𝒒𝟒 0.004462 0.007199 0.005367 

𝑏𝑚𝑥
 0.005362 0.026835 0.022742 

𝑏𝑚𝑦
 0.007085 0.029254 0.023304 

𝑏𝑚𝑧
 0.003949 0.026348 0.022509 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000422 0.001049 0.000892 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000267 0.001020 0.000912 

𝑏𝜔𝑥
(𝑟𝑎𝑑/𝑠𝑒𝑐) 0.000439 0.001093 0.000936 

 

  Looking at Table 4, it is seen that the proposed system gives 

the best results in the presence of a constant magnetometer bias 

vector. The accuracy of the estimations is partially reduced 

when the type of bias is time-varying. At the same time, it is 

observed that the system gives more accurate results in the case 

of bias drift compared to the sinusoidal bias. 

 



 

 

 

6 

6.  Conclusion 

 

  In this study, a nontraditional small satellite attitude 

estimation system based on the TRIAD algorithm and an 

extended Kalman filter (EKF) is proposed. The TRIAD 

algorithm is used as the first phase attitude determination 

algorithm and obtained estimation is given to the EKF as input 

together with the angular velocity measurements provided by 

the gyroscope. In order to increase the accuracy of the attitude 

estimation, the proposed system also calibrates the 

magnetometer and gyroscope biases simultaneously. The 

performance of the system is tested via several simulations. In 

the first simulation, general performance of the system is 

verified where constant bias vectors are applied to the 

magnetometer and the gyroscope. On the other hand, in the 

second simulation, the performance of the system is tested in 

different satellite angular velocities and a trend is observed that 

the attitude and magnetometer bias estimations improved with 

increasing angular velocity. However, this does not apply to 

gyroscope bias estimation. For this reason, it is recommended 

to investigate the relationship between angular velocity and 

gyroscope bias estimation in more detail in future studies. 

Lastly, in the third simulation, the proposed system is tested 

against two different time-varying magnetometer bias vectors, 

as one being the sinusoidal bias and the other one being the 

presence of bias drift. The third simulation results show that the 

system is also capable of estimating various types of time-

varying magnetometer biases, although the estimation accuracy 

reduces slightly.   
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