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Computational power and efficiency of computer processors continue to improve with each passing year. This enables 

usage of less power for computing or more complex models for the embedded systems, especially in the aerospace industry. 

However, implementation of newer and more advanced technologies to the systems in the field or in production is not always 

easy. Therefore, it is still crucial to focus on more capable or efficient algorithms for these systems. The purpose of this 

research is to develop and compare methods that decrease the computational load of onboard attitude estimation algorithms 

that are using the Kalman Filter (KF) as the core algorithm. This is especially important for nano-satellites as they are limited 

both in terms of hardware and power consumption. In the literature, there exists methods that exploit the system model to 

reduce the complexity of matrix operations related to the operations of the KF. This paper focuses on reducing the number 

of KF updates without compromising the performance of the KF. This requires manipulation of the measurements, to get a 

pseudo-measurement of slower frequency. To this end, “integrated measurements” are suggested as a replacement for the 

original measurements. 
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1. Overview 

 

  Inertial Navigation System’s are used in a variety of 

applications to keep track of position, velocity and attitude of a 

vehicle. They are composed of integration algorithms that are 

usually fed by accelerometers and gyroscopes. However, due to 

erroneous nature of all sensors combined with the integration, 

the solutions drift. In order to keep these parameters bounded 

close to their truth values, estimation algorithms along with 

aiding measurements are utilized, most commonly a Kalman 

Filter (KF). 

  In nano-satellites, this approach is commonly used to keep 

track of the attitude. To that end, a triad of gyroscopes is used. 

With an integration scheme to keep track of attitude in mind, 

the attitude estimation problem can be divided into 2 parts. 

Initial attitude determination and continuous estimation of the 

concurrent attitude. This paper focuses on the latter, with the 

intent of decreasing the computational load of attitude 

estimation algorithms. 

  The attitude estimation algorithms usually rely on a KF as 

their estimator. It requires several matrix operations, which 

scales with the number of parameters required to be estimated. 

These computational requirements may be too heavy for a 

nanosatellite. Thus, the computational load must be 

considered1). In the literature, there exists methods that reduce 

the complexity of these matrix operations, decreasing the 

computations required per estimation cycle2). They usually deal 

with systems with very high number of states (Simultaneous 

Localization and Mapping, SLAM, problems)3, 4). Their 

approach is to disregard the states that are not currently useful. 

  This paper focuses on reducing the number of estimation 

cycles to achieve an overall reduction in computational load via 

usage of integrated measurements and applied to nano-satellite 

attitude estimation problem. This approach is meant to be 

compatible with other approaches, complementing one another. 

 

2.  Attitude Estimation 

 

  Attitude estimation problem is usually divided into 2 

components 5). First part is the initial attitude estimation, which 

is performed without any prior knowledge of the attitude. For 

the purposes of this paper, this is done by simply finding the 

rotation between 2 reference vectors and same 2 vectors 

measured in body coordinate system. This is a rough estimate 

considering the errors on the measurements. Second part is the 

continuous attitude estimation using the latest best attitude at 

hand. This algorithm feeds back to itself, further propagating its 

estimation. Most common application is the KF6) which is a 

commonly used optimal estimator. 

  After the initial attitude estimation is completed, inertial 

navigation algorithms will take hold and integrate gyroscope 

measurements to update the changes in attitude. This computed 

attitude will contain both the errors of the initial estimation and 

the integration of the sensor errors. A KF is used to estimate 

these errors. They can be compensated in the navigation 

algorithm accordingly. 

  For the purposes of this paper, Multiplicative Extended 

Kalman Filter (MEKF) will be used as the attitude estimation 

method. At its core, this method is a linearization of attitude 

around the current best attitude estimate, and attitude error is 

defined as a rotation between the estimate and the truth 7). 

Table 1 Characteristics for the modelled gyroscope 

Repeatability Bias Error 1°/h 

Instability Bias Error 10°/h 

Noise 0.1°/√h 

Output Frequency 1 Hz 
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  Table 1 contains characteristics of a typical low-cost MEMS 

gyroscope8, 9) that would typically be used for nano-satellites. 

The bias error alone could result in big attitude errors after 

hours of integration. In order to mitigate this, other available 

measurements can be used with the KF. For a Low Earth Orbit 

(LEO) satellite, these can be a triad of magnetometers and sun 

sensors10). Earth’s magnetic field at satellites position and the 

position of the sun relative to the satellite would provide 

reference vectors in Earth Centered Inertial (ECI), while the 

sensors would provide measurements made in the body. Since 

the attitude of a spacecraft can be defined as the angles between 

these 2 coordinate systems, a relation can be formulated. This 

would provide a relationship between the difference of the 

reference and measurement vectors and the attitude error. This, 

along with the modelled sensor errors, would create a 

measurement model for the KF. KF can take these 

measurements and estimate attitude errors along with the sensor 

errors. 

 

Table 2 Characteristics for the modelled sun sensor 

Noise 1 mrad/√Hz 

Output Frequency 1 Hz 

Measurement cut-off by eclipse 

 

Table 3 Characteristics for the modelled magnetometer 

Bias Error 4000 nT 

Orthogonality Error 50 mrad 

Scale Factor Error 0.1 

Noise 830 nT/√Hz 

Output Frequency 1 Hz 

 

  Table 2 and Table 3 shows the standard deviation of 

measurement errors on typical sensors of their own kinds 9, 10, 

11). These errors cannot be accounted in the initial attitude 

estimation, which leads to the continuous estimation approach. 

 

3.  Integrated Measurements Method 

 

A regular approach to implementing the KF for the attitude 

estimation would utilize the measurements from the 

magnetometer and sun sensor as they become available. This 

would restrict the KF update frequency to their own, which is 1 

Hz in this example. One could down sample the measurements 

and use them at a lower frequency to reduce the computational 

load, but that would come at the cost of performance. This 

paper suggests a manipulation on the measurements so that the 

KF can be slowed down without much effect on the 

performance of the filter. 

Let 𝑦𝑘
𝐵𝑘 be the measurement made at time 𝑡𝑘 in the body 

frame of the satellite 𝐵𝑘 . For an interval of N measurement 

cycles, the integral can be taken in a chosen frame of reference. 

Choosing 𝐵𝑁 as the coordinate system for this purpose, which 

is the body coordinate system of the satellite at the end of the 

integration interval would yield the following: 

𝑌𝑁 = ∫ 𝐶𝐵𝑡
𝐵𝑁𝑦𝑡

𝐵𝑡𝑑𝑡

𝑡𝑁

𝑡0

 

Where, CBt
BN is the directional cosine matrix (DCM) that relates 

body coordinates at time 𝑡 to at time 𝑡𝑁. 

  Since the measurements are discrete, this can be formulated 

in a discrete fashion, using a midpoint integration technique. 

𝑌𝑁 = ∆𝑡∑𝐶𝐵𝑖
𝐵𝑁𝑦𝑖

𝐵𝑖

𝑁−1

𝑖=1

+ 0.5(𝐶𝐵0
𝐵𝑁𝑦0

𝐵0 + 𝑦𝑁
𝐵𝑁) 

  Furthermore, since the attitude relation between the end of 

the interval is not known until the completion of the interval, 

the scheme can be converted into a recursive form to enable its 

computation at every time step rather than a bulk at the end, 

both saving memory and distributing compute time evenly. 

 

𝑌𝑚 = 𝐶𝑚−1
𝑚 (𝑌𝑚−1 + 0.5𝑦𝑚−1

𝐵𝑚−1∆𝑡) + 0.5𝑦𝑚
𝐵𝑚∆𝑡, 𝑚 = 1, . . , 𝑁 

Where, 𝑌0 = 0, ∆𝑡 is the output interval of the sensor, and 𝑚 

is the counter for the steps to reach the integration interval. 

  This scheme distributes the computation of the discrete 

integral among the sensor measurement cycles rather than 

clumping all at the end. It is important for a real-time 

application for the computations to be evenly distributed in time 

for consistent performance. 

  KF can be designed for this new measurement with little 

modification. The errors present in the measurements 𝑦 would 

be integrated into 𝑌. This can be accounted by addition of a 

state that represents 𝑌, the integrated measurement. This also 

greatly simplifies the measurement matrix, as the measurement 

becomes a state itself. As a result, both time propagation and 

measurement update portions of the KF can be slowed down to 

the frequency of the new measurements. Overall, this results in 

a reduction of computational load for the system. 

  However, it should be noted that this integration interval can 

not be increased forever. Assuming a variable attitude, the 

attitude estimation problem can be highly non-linear. The 

linearized KF can fail to represent the system properly within 

the given time interval. This will lead to a discrepancy between 

the actual errors of the estimation and the standard deviation 

estimated by the filter, along with the probability distribution 

of the errors.  

 

4.  Results 

 

  In this section, a KF that utilizes measurements directly 

(dubbed as regular KF) and a KF that uses the integrated 

measurements implementation will be compared. These 

approaches will be compared using a simple model with no 

states for sensor errors, then a complex model containing most 

commonly expected error states. The generated sensor errors 

will also correspond to the complexity to the model used. 

 

4.1.  Simple Model 

  Simple model contains 6 considered parameters. 3 for 3-

dimensional attitude error, and 3 for gyroscope instability bias. 

  Truth data for gyroscopes, magnetometers11, 12) and sun 

sensor were generated for a simple LEO satellite. Sun sensor 

and magnetometer data were finalized by adding only the noise 

errors specified in Table 2 and Table 3. Gyroscope 

measurements were finalized by adding all the errors specified 

in Table 1. 

 

  

Equation 1 

Equation 2 

Equation 3 
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4.1.1.  Regular KF 

  Figure 1 shows the attitude performance of a regular KF. 

While both magnetometer and sun sensor measurements are 

available, attitude uncertainty goes down below 1 mrad. 

Starting at about half hour mark, every 100 minutes the satellite 

goes behind the Earth and sun sensors stop providing 

directional measurements. This results in the uncertainty 

increasing up to 7 mrad for the worst case. The error remains 

mostly within the expected range in all cases. 

  Figure 2 shows the expected PDF of a gaussian distribution 

with a red line. Blue bars show the distribution of the realized 

error for a sample run. It confirms that the angle error is 

normally distributed. 

 

  Figure 3 shows the gyroscope instability bias estimation error 

for each axis. If both aiding measurements are cut-off 

completely, this estimation will not help in keeping the angle 

errors small. This is a flaw that occurs due to trying to estimate 

a randomly drifting gyro bias. 

 

4.1.2  Integrated Measurements KF 

  Figure 4 shows the attitude estimation error of the KF that 

utilizes integrated measurements method for an interval of 10 

seconds. The quality of attitude estimation is on par with that 

of the regular KF approach. 

  Figure 5 shows that the distribution of the angle errors has 

remained gaussian. If the integration interval is expanded, this 

distribution may slowly decay until divergence. 

Figure 1 Attitude estimation error of regular KF 

Figure 2 Probability Density Function (PDF) of x-axis angle error 

Figure 3 Gyro instability bias estimation error 

Figure 4 Attitude estimation error of 10s integrated measurements KF 

Figure 5 PDF of x-axis angle error for 10s integrated measurements KF 

Figure 6 Gyro instability bias estimation error for 10s integrated 

measurements KF 
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  Figure 6 shows an improvement in the estimation of a drifting 

gyroscope bias. The error remains within or in close proximity 

of the variance estimated by the KF. 

  A powerful desktop pc was used to compute attitude integrals 

with KF updates and feedback mechanisms for both the regular 

KF approach and integrated measurements KF approach, with 

a single core affinity. Both solution approaches were compared 

for a data of length of 7 hours. The speed up gained by the usage 

of 10 seconds of integrated measurements was measured to be 

a factor of 2.6x. This includes the overhead of numerical 

integrals brought with the new method. Comparisons of Figures 

1-6 show that no performance has been lost in the process, and 

even some potential gains were achieved. 

 

4.2.  Complex Model 

  This model contains the 6 states from the simple model. On 

top of those the following states are added: 

• 3 Magnetometer Bias Error States 

• 3 Magnetometer Scale Factor Error States 

• 3 Magnetometer Orthogonality Error States 

  This complex model amounts to total of 15 states for the 

regular KF approach. In order to implement the integrated 

measurements approach, 3 states must be added on top as 

Integrated Magnetometer Error States, totaling at 18 states. 

This increase in number of states will come at a computational 

cost. 

  Along with their model counterparts, all the error types 

specified in Table 1, Table 2 and Table 3 are added on top of 

their respective generated truth data. This constructs a more 

realistic set of measurements to test the proposed method to the 

traditional approach. 

4.2.1  Regular KF with Complex Model 

  Figure 7 shows that the regular KF approach can still estimate 

the angles using complex model and errors at a similar, but 

slightly worse, level compared to the simple model and errors. 

 

 

 

 

 

 

  Figure 8 shows that the integrity of the normal distribution is 

preserved. Regular KF is still able to estimate angles with the 

presence of the additional states and errors. 

  Figure 9 shows that while early estimates by the regular KF 

is within reason, it drifts away as time goes on. This flaw is 

identical to that of the simple model. 

  Figure 10 shows that the magnetometer bias can be reduced 

by an order of magnitude. The final estimation is a biased 

estimate. 

  

Figure 7 Attitude estimation error of regular KF with complex model 

Figure 8 PDF of x-axis angle error with regular KF and complex model 

Figure 9 Gyro bias estimation error for regular KF with complex model 

Figure 10 Magnetometer bias estimation error for regular KF with 

complex model 
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  Figure 11 shows that the orthogonality error is reduced from 

50 mrad to below 0.5 mrad. For a LEO satellite, this error would 

be slightly lower than the magnetometer bias. 

  Figure 12 shows that the scale factor error is reduced from 

10% to 0.2%. Before corrections, this error would be 

comparable to that of orthogonality error. Note that the final 

estimate is biased, as it was the case for the magnetometer bias 

estimate. 

 

4.2.2  Integrated Measurements KF with Complex Model 

  In order to use the integrated measurements method with 

presence of errors on the actual measurement, the model for the 

KF must be expanded to include integrated error states. This is 

a current drawback with this method which will be investigated. 

  Note that the measurement noise (commonly denoted with R 

for KF applications) given to the integrated measurements KF 

has been tuned very slightly. All the errors are generated 

randomly so the tuning is not meant to compensate a sample 

case, but rather smooth out the initial large deviations. With a 

closed loop approach, these deviations may damage the 

accuracy of the linearized model used for the KF, resulting in 

slightly worse results.  

  The following results are obtained by integrating 

measurements for 10 seconds, and updating the KF at the end 

points of the integration cycles. 

  Figure 13 shows that the quality of the angle estimates is 

comparable to that of the regular KF. The performance of the 

filter is not compromised. 

  Figure 14 shows that the actual error distribution is close to 

that of a normal distribution. However, peak of the distribution 

is slightly flattened. As the integration time is increased, the 

distribution is affected more and more until KF starts diverging. 

  Figure 15 shows an improvement on the regular KF method 

for estimating drifting gyroscope bias errors. The errors are kept 

within the expected proximity of their variances throughout. 

Figure 11 Magnetometer orthogonality estimation error for regular KF 

with complex model 

Figure 12 Magnetometer scale factor estimation error for regular KF with 

complex model 

Figure 13 Attitude estimation error for 10s integrated measurements KF 

with complex model 

Figure 14 PDF of x-axis angle estimate error for 10s integrated 

measurements KF with complex model 

Figure 15 Gyroscope bias estimation error for integrated measurements 

KF with complex model 
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  Figure 16 shows comparable magnetometer bias estimation 

errors to that of the regular KF. The performance is similar. 

  Figure 17 shows comparable performance in terms of 

estimating magnetometer orthogonality errors compared to the 

regular KF.  

  Figure 18 shows a slight improvement over the regular KF 

approach in estimating the scale factor error. The residual scale 

factor is significantly smaller compared to the regular KF. 

  For the complex model and sensors errors, the speed up of 

10s integrated measurements KF was 2.4x. The upper limit 

without impacting the performance was found to be 20s, which 

yielded a total speed up of a factor of 2.8x. 

 

5.  Conclusion 

 

  In this study, a different approach to reducing the 

computational load of on-board attitude estimation algorithms 

was proposed. Realistic random sets of sensor data were 

generated on a LEO trajectory, which were used to demonstrate 

the estimation performance of the proposed method. Also, 

method was shown to be lighter overall in a realistic setting. 

  In conclusion, the integrated measurements approach is a 

lighter yet as performant replacement to the regular approach. 

  Further improvements could be obtained combining 

integrated measurements method with other methods 

available13) that are compatible with the problem at hand. 
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Figure 16 Magnetometer bias estimation error for integrated 

measurements KF with complex model 

Figure 17 Magnetometer orthogonality estimation error for integrated 

measurements KF with complex model 

Figure 18 Magnetometer scale factor estimation error for integrated 

measurements KF with complex model 


