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A demand of high accuracy settles attitude determination and control systems, which CubeSats rely on for success of a 

mission, into a vital role. A star sensor is a prominent choice in attitude determination because of its capability of high 
accuracy and its usability at any point in space independently from any celestial body. The process of star identification is a 
key phase within the implementation of attitude determination, in which an observed body vector is transformed into a vector 
defined in the inertial frame. However, the sources of noise injected on the observed vector challenges the accuracy of star 
identification outputs due to fallacies in the phase of star detection and centroiding prior to star identification. Accuracy in 
the process of star detection and centroiding may vary, besides the sources of noise, with the properties of star sensors 
including field-of-view, resolution and saturation sensitivity. The improvements cost, quality, success and lifetime of a 
CubeSat space mission may be ensured through noise removal implemented in the phase of star detection, centroiding or star 
identification, which would lead to higher accuracy and less complexity, thus helping decrease storage and memory space. 
Furthermore, as to the standards of the European Space Agency, a star sensor is required to resume operating in the presence 
of non-star objects in the field-of-view or solar flare which induces high energy protons to interact with the imaging field, 
which are regarded as sources of noise. The sources of noise involve false stars due to reflecting objects and solar flare, 
shifted stars due to thermal deformation or optical flaws and missing stars due to blockage of field-of-view and dead pixels. 
These phenomena pose a threat against high accuracy; thus, they are required to be removed where possible. 

This study aims removal of false stars using a morphological approach, which is followed by estimation of camera 
motion between two image frames. The proposed method is based on isomorphism through matching the star pairs in at least 
two consecutive image frames. The detection of false stars also allows estimation of translational and rotational motion of 
the star sensor camera. The implementation is carried out by setting feature vectors involving the average luminous magnitude 
of star pair, the angular separation of star pair and the slope of star pair for each pair of stars in each frame and setting a list 
of disparities containing Euclidean distances between each pair of feature vectors selected from two different consecutive 
frames. The disparity vectors are used to determine the star objects and to label non-star objects, as well as to retrieve the 
motion parameters, including translation and rotation. The features of the star sensor camera CubeStar used in the project 
SharjahSat-1 is simulated in the experimental setup of this study. The effectiveness and accuracy of the method is revealed 
in the empirical results, and the additional motion estimation parameters are planned to be used in future studies of star 
identification. 
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1. Overview 

 

  This study focuses on removal of false stars using a 

morphological approach, which is followed by estimation of 

camera motion between two image frames. The proposed 

method is based on isomorphism through matching the star 

pairs in at least two consecutive image frames. The detection of 

false stars also allows estimation of translational and rotational 

motion of the star sensor camera. Subsequent to detection of 

stars and centroiding, a set of feature vectors is obtained for 

each pair of stars in each frame. A feature vector comprises 

three elements including the average luminous magnitude of 

star pair, the angular separation of star pair and the slope of star 

pair. Thereafter, a list of disparities is set, which contains 

Euclidean distances between each pair of feature vectors, each 

of which is selected from two different consecutive frames. A 

disparity in the list also comprises vectors of three elements. 

The first two elements in the disparity vector are used to 

determine the star objects and to label non-star objects, while 

the third element is also used to retrieve the motion parameters, 

including translation and rotation. This is achieved by means of 

tolerances corresponding to luminous magnitude and angular 

separation to take the presence of noise of shifted stars into 

account. A pair is assumed to be of star objects in case the pair 

satisfies criteria enforced by tolerances. Having detected star 

objects in the frames, it is verified whether the third elements 

of disparity vectors corresponding to the pairs of star objects lie 

within the given tolerance. An object that is not involved in any 

of the pairs satisfying the criterion is labeled as a non-star 

object. Finally, an estimation of rotational camera motion is 

derived since it holds information of slope change. Also, the 

translational motion is retrieved by calculating the difference 

between the labeled star objects after reversing the rotational 

motion in the latter image frame. The project SharjahSat-11) 

uses the star sensor camera CubeStar2), which is simulated in 

the experimental setup of this study. The effectiveness and 

accuracy of the method is revealed in the empirical results, and 

the additional motion estimation parameters are planned to be 

used in future studies of star identification. 

 

2.  Related Works 

 

  Star identification includes image preprocessing, feature 

extraction and matching. Of them, image preprocessing 

involves two steps including noise removal and centroiding. 

Mostly, the center of gravity method yields the fastest results 

for centroiding despite a reduction in accuracy due to 

sensitiveness to noise3). Noise is, mostly, removed by linear 

filtering, median filtering, morphological filtering or etc4). The 

types of input noise, to which a star sensor is subject, include 

positional noise, missing and false stars as well as magnitude 

noise5). Positional noise may emerge due to thermal 

deformation, optical flaws or calibration errors, while 

magnitude noise is incurred by the sensitivity of the sensor. 
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Interfering stars include false stars and missing stars 

respectively caused by reflecting objects in the field-of-view 

(FOV) and solar flare and blockages in the FOV and dead 

pixels. Recent studies analyzed the performance of the 

proposed star identification methods for their robustness 

against false star noise6-8), or simulators were developed to 

make noise injection including false stars9). Lastly, a study 

proposed a false star filtering algorithm to be used as a 

preprocessing algorithm for existing star identification 

algorithms, which utilizes the difference between motion of 

objects in the FOV by implementing angular distance tracking 

and star voting on multiple consecutive frames10). 

 

3.  Preliminaries 

 

  In this work, the stellar images are simulated using the features 

of CubeStar which is a miniature star tracker specifically 

intended for, but not limited to low-power, performance-critical 

CubeSat applications2). The relevant features used in the 

simulation are given in Table 1. Note that the magnitude limit 

is arbitrarily specified for a better representation and illustration 

of results of the study while the onboard star catalog of 

CubeStar, in fact, comprises a reduced list of the Hipparcos 

catalog containing 410 stars brighter than 3.8 Vmag. 

 
Table 1.  The optical features of CubeStar simulated in the study. 

FOV 42o × 42o 

Resolution 937px × 937px 
Magnitude Limit > 12.6 Vmag 
Mass 55 grams 

 

  The Hipparcos Star Catalog11), which contains high-quality 

scientific data of 118,218 stars, is used in the implementation 

of a simulator in this work. The catalog provides the user with 

several characteristics of each star defined in the International 

Celestial Reference System (ICRS) with an epoch of J1991.25. 

In this work, the information of position and magnitude is used. 

The entries used in the simulation are shown in Table 2. The 

positional information contains right ascension 𝛼 ∈ (0𝑜, 360𝑜) 
and declination 𝛿 ∈ (−90𝑜, 90𝑜), both in degrees. Plus, 

magnitude information is given in Johnson UBV Photometric 

System. The feature vectors used for matching and labeling 

stars in this study contain the positional and magnitude 

elements as given in the catalog. 

 
Table 2.  Entries from the Hipparcos catalog. 

Label Symbol Description Field Unit 
HIP - Identifier H1 - 
V 𝑉𝑚𝑎𝑔 Magnitude H5 mag 

RA 𝛼 Right ascension H8 deg 

Dec 𝛿 Declination H9 deg 

 

4.  Methodology  

 

The denoising process to be implemented is simply a false 

star removal. A subgraph isomorphism approach is employed 

on two consecutive images. This approach requires two sets of 

feature vectors separately obtained from two consecutive 

images. Using two sets of feature vectors, a list of disparity 

vectors is derived. The disparity vectors are obtained by 

calculating the norm of the difference between each pair of 

feature vectors in two separate sets obtained from the 

consecutive images. The disparity vectors satisfying the given 

criteria are labeled as star objects, namely true stars, while the 

ones failing the criteria are labeled as non-star objects, namely 

false stars. 

 

4.1.  Feature Extraction 

Prior to implementation of subgraph isomorphism, a set of 

feature vectors are extracted for each consecutive image. The 

feature vectors contain the slope of the line segments 

connecting each pair of stars with given centroid and magnitude 

separately for some consecutive test images as illustrated in 

Fig. 1. 

 

Fig. 1.  Pairs of stars in two consecutive test images. 

 

  Note that the objects labeled as 𝑎, 𝑏 and 𝑐 are star objects, 

whereas the object labeled as 𝑥 is assumed to be a non-star 

object in Fig. 1. The line segments 𝑑𝑎𝑏, 𝑑𝑎𝑐, 𝑑𝑏𝑐, 𝑑𝑎𝑥, 𝑑𝑏𝑥 and 

𝑑𝑐𝑥 represent the angular separations between the 

corresponding objects, and 𝑚𝑎𝑏, 𝑚𝑎𝑐, 𝑚𝑏𝑐, 𝑚𝑎𝑥, 𝑚𝑏𝑥  and 𝑚𝑐𝑥 

denote the slope of the corresponding line segments with 

respect to a line assumed to be horizontally aligned with respect 

to the frame plane. Thus, a feature vector is defined such that  

𝑣 = (
𝐴
𝑑
𝑚

 ) 

where 𝐴, 𝑑 and 𝑚 denote the average magnitude, angular 

separation and slope respectively. In each image frame with 𝑁 

detected objects, the number of pairs of stars is calculated by 

𝐿 = 𝐶(𝑁, 2) =
𝑁!

(𝑁 − 2)! ⋅ 2!
 

which also yields the number of feature vectors set for each 

image frame. 

4.2.  Generation of Disparity List 

  Two sets of feature vectors are obtained from two consecutive 

image frames separately. Selecting two arbitrary vectors 𝑣𝑖⃗⃗⃗ ⃗
𝑡
 and 

𝑣𝑗⃗⃗⃗ ⃗
𝑡+1

 from the feature vector sets of the image at time 𝑡 and at 

time 𝑡 + 1, a new vector set is generated by calculating the 

norm of the difference between each pair of vectors such that 

‖𝑣𝑖⃗⃗⃗ ⃗
𝑡
− 𝑣𝑗⃗⃗⃗ ⃗

𝑡+1
‖ = (

𝛥𝐴𝑖𝑗
𝛥𝑑𝑖𝑗
𝛥𝑚𝑖𝑗

) 

where 𝛥𝐴𝑖𝑗, 𝛥𝑑𝑖𝑗 and 𝛥𝑚𝑖𝑗 respectively correspond to difference 

of magnitudes, difference of angular separations and rotation. 

Considering that there are 𝐿1 and 𝐿2 feature vectors in the image 

frames, the number of vectors in the disparity list is calculated 

by 

𝐷 = 𝐿1 × 𝐿2 

where 𝐷 is the number of vectors in the disparity list. 

4.3.  Star Labeling and Motion Estimation 

  Having generated the disparity list, the elements in the list 

satisfying the criteria 
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𝛥𝐴𝑖𝑗 < 𝜖𝐴
𝛥𝑑𝑖𝑗 < 𝜖𝑑

   
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑜𝑘⃗⃗⃗⃗⃗ 𝑠𝑡𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 

are considered to point to star objects, where 𝜖𝐴 and 𝜖𝑑 are 

tolerances corresponding to the relevant value. Also, another 

criterion is checked to verify the labeling, whether the labeled 

stars are accumulated satisfying that 

‖𝛥𝑚𝑖𝑗 − 𝑠‖ < 𝜖𝑚 

where 𝑠 is the difference of slopes and 𝜖𝑚 is the slope tolerance. 

In this regard, the value 𝑠 yields the amount of rotational motion 

if it is converted to an angular value 𝜃 by means of 

𝜃 = tan−1 𝑠  

where 𝑡𝑎𝑛−1 is the inverse tangent function. Lastly, by reverse 

rotating the second image and calculating the number of pixels 

between the identically labeled star objects, the amount of 

translational motion 𝜌 is also yielded. Thus, the motion 

estimation is represented by the vector 

𝜗
̃
= (
�̃�

𝜃
) 

where �̃� and 𝜃 respectively stand for translational and rotational 

amount of motion. 

5.  Simulation and Noise Injection 

 

The simulated images are generated using the sensor model2) 

given in Table 1 and a Gaussian noise model for both positional 

and magnitude noise. As the sensor has a FOV of 42𝑜 × 42𝑜 

and resolution of 937𝑝𝑥 × 937𝑝𝑥, a pixel in the image is 

assumed to cover a FOV calculated as follows. 

𝐹𝑂𝑉 𝑜𝑓 𝑜𝑛𝑒 𝑝𝑥 = (
42𝑜

937𝑝𝑥
)

2

= 0.04482𝑜 × 0.04482𝑜 

  The characteristics given in Table 1 are assumed in generation 

of the simulated image given in Fig. 2, except that the 

magnitude limit is lowered to 3.8 mag for the sake of a better 

illustration. Subsequently, the process of noise injection is 

implemented on the generated image. Respectively, positional 

noise and magnitude noise are added to the simulated image. 

 

Fig. 2.  A couple of star images obtained from the Hipparcos database 

without noise at the left-hand side and with noise injected at the right-
hand side. 

 

  Fig. 2 shows two images generated with a magnitude limit 3.8 

mag, a FOV 42𝑜 × 42𝑜 and a resolution 937𝑝𝑥 × 937𝑝𝑥. Both 

images are bounded by an interval of right ascension 𝛼 ∈
[0𝑜, 42𝑜] and of declination 𝛿 ∈ [0𝑜, 42𝑜]. Two types of noise 

are injected, positional noise and magnitude noise. For a better 

revelation of the effects of noise a smaller patch is extracted and 

zoomed in. the patch has a FOV 2𝑜 × 2.7𝑜 corresponding to a 

resolution 45𝑝𝑥 × 62𝑝𝑥,  and it is located within 𝛼 ∈
[28.1𝑜, 30.1𝑜] and 𝛿 ∈ [29.2𝑜, 31.9𝑜]. 
  The stars are generated using a 2D Gaussian function, center 

of which is located on the position of the star given in the 

catalog, that is, the mean and variance of the function are the 

exact location and the magnitude of the corresponding star 

respectively. The addition of positional noise is carried out by 

imposing a shift effect on the centroid of a star through an 

individual Gaussian function along horizontal and vertical axes 

of the image frame. In this example, the amount of positional 

noise is determined by a normal distribution 

𝑁(𝜇𝑝, 𝜎𝑝) 

with a mean 𝜇
𝑝
= 0 and variance 𝜎𝑝 = 1 in terms of pixel. The 

amount of magnitude noise is also determined by a normal 

distribution 

𝑁(𝜇𝐴, 𝜎𝐴) 

with a mean 𝜇
𝐴
= 0 and variance 𝜎𝐴 = 5 in terms of pixel 

intensity. The effect of both types of noise is clearly observable 

in the enlarged patch, where the positions of stars are shifted 

and the pure Gaussian shape of stars in the left-hand side are 

slightly degraded in the image at the right-hand side. 

 

6.  Case Study 

 

  The simulation tools are used in the implementation of the 

complete process of false star removal and motion estimation. 

Fig. 3 shows two images that are assumed to represent the 

images captured at time 𝑡 and at time 𝑡 + 1 respectively. The 

image at 𝑡 at the left-hand side contains six stars picked from 

the database catalog in compliance with a magnitude limit of 

12.6 mag in the region bounded by 𝛼 ∈ [42𝑜, 42𝑜] and 𝛿 ∈
[42𝑜, 42𝑜]. The image at 𝑡 + 1 at the right-hand side is a 

regeneration of the first image by shifting it −5𝑜 in the 

direction of declination and rotating 10𝑜 counterclockwise. 

Also, there is no non-star object in both images. While the 

amount of shifting and rotation is identical for each star, the 

non-star object is replaced arbitrarily in the images. The 

threshold values used in the example are 𝜖𝐴 = 10, 𝜖𝑑 = 3𝑝𝑥 

and 𝜖𝑚 = 1
𝑜. The process outputs the object labeled with 

number 3 as a non-star object in the first image and the one 

labeled with number 1 as a non-star object in the second 

image. Also, the method can match the stars, thereby it is 

possible to estimate the amount of shifting and rotation of the 

sensor. 

 

Fig. 3.  Two consecutive simulated images that are used in false star 

removal and camera motion estimation. 

 

  In the process, firstly, the objects are detected through a blob 
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analysis, and the area (number of pixels) and centroid of the 

objects are extracted. The red labeled numbers are assigned to 

each object in the frames independently. The labels are matched 

in the end of the process as outputs. Centroid is calculated by 

means of the method of center of gravity such that 

𝑐 = (𝑥, 𝑦) = (
∑ 𝑝𝑖 × 𝑥𝑖𝑖

∑ 𝑝𝑖𝑖

,
∑ 𝑝𝑖 × 𝑦𝑖𝑖

∑ 𝑝𝑖𝑖

) 

where 𝑐 is the center of gravity, and 𝑝𝑖 , 𝑥𝑖 and 𝑦𝑖 are intensity 

and position components corresponding to each pixel. The 

magnitude 𝐴 is estimated by averaging the pixel intensity over 

the region of object in terms of number of pixels as follows 

𝐴 =
∑ 𝑝𝑖
𝑁
𝑖=1

𝑁
 

where 𝑝𝑖  is pixel intensity, and 𝑁 is the number of pixels 

assigned to the object. 

  After star detection and centroiding, two feature vectors sets 

are generated for each image frame, containing 21 vectors for 7 

objects in both frames. The disparity list is generated using the 

feature vectors, which contains 21 × 21 = 441 disparity 

vectors. Note that the labels are reserved beside each vector in 

the disparity list in order not to lose information to be used for 

matching. 

  The star matching algorithm intakes the disparity list and the 

tolerance values to evaluate whether any vector in the disparity 

list remains lower than the tolerances of magnitude 𝜖𝐴 and 

angular separation 𝜖𝑑. If this is the case, the objects 

corresponding to these vectors are labeled as candidates of star 

objects. A subsequent process also checks whether the star 

candidates satisfy the criterion enforced by the slope tolerance 

𝜖𝑚. Accordingly, the star objects are matched such that the 

labels 1, 2, 4, 5, 6 and 7 in the first image are matched to the 

labels 2, 3, 4, 5, 6 and 7 in the second image in the given order. 

The label 3 in the first image and the label 1 in the second image 

are not matched, thus being assumed to be non-star objects. In 

the simulation, it is assumed that 𝜖𝐴 = 10, 𝜖𝑑 = 3𝑝𝑥 and 𝜖𝑚 =
1. In this regard, in the disparity list, the difference of pixel 

intensities varies between (3.5, 9.5) falling under 𝜖𝐴, the 

difference of angular separation varies between 
(0.0021, 2.9126) falling under 𝜖𝑑 and the difference of angular 

separation varies between (9.7463𝑜, 10.5838𝑜) falling under 

‖𝜖𝑚 − 𝜃‖. Thus, the rotational component of motion 𝜃 is 

estimated to be 9.7463𝑜 < 𝜃 < 10.5838𝑜, which is actually 

𝜃 = 10𝑜. 

  After estimating the rotational motion 𝜃, the star objects in the 

second image at time 𝑡 + 1 can be rotated by an angle −𝜃 as 

follows 

𝑜𝑖⃗⃗⃗ ⃗
′
= 𝑅(−�̃�) × 𝑜𝑖⃗⃗⃗ ⃗

𝑡+1
 

where 𝑅(−𝜃) = (
cos(−𝜃) − sin(−𝜃)

sin(−𝜃) cos(−𝜃)
) = (

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) 

is the rotation matrix, 𝑜𝑖⃗⃗⃗ ⃗
𝑡+1
= (

𝑥𝑖
𝑡+1

𝑦𝑖
𝑡+1) is the rotated star object 

𝑖 in the second frame and 𝑜𝑖⃗⃗⃗⃗ ′ = (
𝑥𝑖′ 

𝑦
𝑖
′ 
) is the rotated star object 

𝑖. Then, the distance in pixels between the rotated star object in 

the second image and the matched object in the first image 

yields the estimated translational motion, such that 

𝜌�̃� = 𝑥𝑖′ − 𝑥𝑖
𝑡

𝜌�̃� = 𝑦𝑖′ − 𝑦𝑖
𝑡  

where 𝜌�̃� and 𝜌�̃� are the components of the translational motion. 

  An example is given for the star object labeled 7 in both 

images matched in the experiment. The star object 7 in the 

second image is firstly rotated by an angle −𝜃 ∈
(−10.5838𝑜, 9.7463𝑜), and then the estimated translational 

components are obtained by subtracting the rotated component. 

𝑜7⃗⃗ ⃗⃗
′
= ( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) × (
770 
578 

)
7

𝑡+1

 ⇒  
857 < 𝑥7

′ < 863

651 < 𝑦7
′ < 661 

 

𝜌�̃� = 𝑥7
′ − 8587

𝑡  ⇒  𝜌�̃� ∈ (−1,5)

𝜌�̃� = 𝑦7′ − 7407
𝑡  ⇒  𝜌�̃� ∈ (−89,−79)

 

  The results imply that the second image is horizontally 

translated by 𝜌�̃� ∈ (−1,5) ≈ (−0.04
𝑜, 0.22𝑜) and vertically by 

𝜌�̃� ∈ (−89,−79) ≈ (−3.99
𝑜, −3.54

𝑜
) and rotated by 𝜃 ∈

(9.7463𝑜, 10.5838𝑜) with respect to the first image, while the 

real values are 𝜌
𝑥
= 0𝑜 and 𝜌

𝑦
= −5𝑜. 

 

7.  Conclusions and Future Work 

 

  The removal of non-star objects from the images increases the 

likelihood of commissioning true stars into the algorithm to 

boost accuracy and reduce complexity. Besides, the motional 

estimation parameters may provide the subsequent steps of star 

detection, centroiding or star identification with valuable 

information to further increase accuracy and decrease 

complexity. 

  Though the results achieved in the case study are promising, 

it is problematic in case of entrance of a new star into the scene 

in the second image since the new star object would not be 

matched and labeled as a non-star object. However, this 

problem may be handled by increasing the number of 

consecutive images and keeping a log of the star objects in the 

previous image frames. 

  In addition to a more comprehensive study that will avoid false 

labeling mentioned above, this study is intended to be used in 

the preprocessing phases of future studies. 
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